1.	Course number and name	Strength of Materials
2.	Credits and contact hours	3 credits and 3 1-hour lectures per week
3.	Instructor's or course	Mustafa Mahamid, PhD, SE, PE, P.Eng., F.SEI,
	coordinator's name	F.ASCE
		Prepared: May, 2018
4.	Textbook title, author, yr	Mechanics of Materials 3e by Timothy A. Philpot
		Publisher: Wiley, 2013
a.	Supplemental materials	Instructor's Lecture notes
5.	Specific course information	
a.	Brief description of the	Relationships between the stresses and strains within
	content of the course (catalog	a deformable body. Axially loaded members, torsion
	description)	and bending of bars. Stress transformation equations.
	1 /	Column buckling.
b.	Prerequisites or co-requisites	Statics and Calculus III
6.	Specific goals of the course	
a.	Specific outcomes of	Course Objectives: The objective of this course is to
	instruction, ex. The student	prepare students to learn problem solving skills in
	will be able to explain the	solid mechanics at a level sufficient to pass the
	significance of current	Fundamentals of Engineering exam strength of
	research about a particular	materials topical area and prepare them for advanced
	topic.	studies in structural analysis and design.
	-	Educational Outcomes: Students will be able to
		analyze both statically determinate and indeterminate
		problems involving axial torsional and flexural
		deformations. Successful completion of this course
		will prepare students for further study in structural
		analysis and design
		Assessment criteria: Homework 10%: 2 Midterm
		exams 50%: Final 40%
7.	Brief list of topics covered	1 Stress strain and linearly elastic material behavior
		2. Axially loaded bars
		3. Torsion of circular shafts
		4. Shear forces and bending moments
		5. Stresses in beams
		6. Deflections of beams
		7. Analysis of stress and strain
		8. Pressure vessels and combined loadings
		9. Buckling of columns