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Abstract

In this project we are concern with feasibility problem, convex
and non-convex in real Hilbert spaces. We study the performances of
the well-known Douglas—Rachford algorithm and illustrate how this
algorithm which uses reflections with respect to sets, can be applied
successfully to solve system of quadratic equations (convex case) and
also combinatorial games such as the Eight Queen puzzle and Sodoku.

This project not only shows the practical advantages of the Douglas—
Rachford method, but also suggest to remodel different problems as
feasibility problems and then apply and kind of projection method for
solving it.

I would like to thank Dr. Aviv Gibali for helping defining this
interesting research project and guide me along its process. I would
also like to thank the Mathematics Department for providing me all
the needed mathematical and programming skills as well as unlimited
support throughout my studies.



1 Introduction

In this work we are concerned with feasibility problem and to keep it simple
at the beginning we focus on the Convez Feasibility Problem (CFP). Given
nonempty, closed and convex sets C; C R? where i = 1, dots, N. The CFP is
formulated as follows.

find a point 2* € C := NY,C;. (1.1)

One of the simplest and earliest methods for solving CFPs are projection
methods. Originally these methods were used for solving system of linear
equations and inequalities in the Euclidean spaces. Later these methods
were improved and generalized to solve general CFPs.

These methods are iterative procedures which use projections, of different
types, onto sets by taking into account that the projection onto the intersec-
tion of the sets is a very hard computational task, while projections onto the
individual sets are relatively easier. This is the reason why these methods
are applied successfully in many real-world applications, see [1, 7]

One specific methods which uses reflections and gains a lot of interest
in recent years is the Douglas—Rachford algorithm [7]. The method was
introduced to solve the following instationary heat equation:

{ Oy = Opptt + Oy (1.2)

u(z,y,0) = f(x,y).

where u, f are some functions.

Lions and Mercier [J] were the ones who made the major work in this
field and adjusted and extended the algorithm successfully for solving CFPs
and even more general problems, such as zero of the sum of two maximally
monotone operators.

In this project we first introduce several real-world problems that can be
remodeled as a feasibility problem (convex and non-convex) and then apply
the Douglas—Rachford algorithm for solving it successfully.



2 Preliminaries

We start with several definitions and notions.

Definition 2.1 Let X be a vector space and let C C X. We say C'is convex
of
MO+ (1=XNCCC, Yrelol]. (2.1)

Convex Not Convex

Figure 1: Convex and non-convex sets

See Figure 1 for geometrical illustration of conver and non-convex sets.

Definition 2.2 Let C C R? be some closed set.(i) The closest point

projection in C is a set-valued mapping Po : RT = C which assign for
any v € R an element denoted by Po(x) and is characterized by the fact
that Pc (x) € C and is the solution of the following optimization problem

Po(x) = Argmin{||z — z| | z € C} (2.2)
(ii) The reflection in the set C is a set-valued mapping Rc : RT = R™

defined as Ro(x) = 2Po(x) — x.
See Figure 9 for geometrical illustration.



Figure 2: (Projection). Point B is the projection of A onto the circle.

Some useful examples in which there exists close formulas for the projec-
tions (hence also the reflections) are given next.

Example 2.3 Let C; CR? fori=1,..., N be closed and convex sets. Con-
sider the product set C:=C) x Cy---x Oy C RN?. The projection onto C
of a point x', 2%, ... 2N (x' € R?) is defined as:

PC('Tla I27 cee 7'TN) - (PC’1 (wl)v PC2(‘T2)7 R PCN(xN))' (2?))
Proof. Clearly, Pr,(z;) € C;. Then (Pg,(z'), Pe,(2?), ..., Poy(zV)) € 1 x
1

Cox - xCy=C. nowVeeC,letc=(c',c?...,cN) with ¢; € C;. we will
show that:

(c! — (P, (zh),. .. ,Pcn(a:N)), (a:l,a:Q, . ,a:N) — (Pg, (2Y), ... ,PCN(:I:N))) <0

{(c',... M) —(Pe, (2Y), ... ,PCN(xN)), (xh,. .. 2 ) —=(Pe, (zh), ... ,PCN(Q:N)))

= {(c' = Pg,(2"),. .. N — PCN(Q:N)), (' — Pg, (zh), ... o — PCN(.CIZN))>
= (¢! = Po,(¢%), 2" = P, (a")) 4+ - + (¢ = Py (aV), 2" — Poy(a™)) <0

because every term above is less than or equal to 0. m



Example 2.4 Consider the following set which is called the diagonal set

D:={(z",2%...,2"V) e RV | 2’ e R} (2.4)

Given a point (x',2%,...,2N) € RN, the projection of it onto D is defined
as

Pp(zt,2?,... 2N) = (z,7,...,7) (2.5)

—_ 1
where T = + Y x;

Proof. First observe that D is closed and convex. Clearly,(Z,Z,...,T) € D,
let c € D, say c = (z,x,...,x) for some x € R, Then

(c—(z,7,...,7), (" 2% ..., 2N) — (7,7,...,7))
= {(z,2,...,2) — (T,...,7), («", 2%, ..., 2N) = (T,..., 7))
={((z—7,...,0—72), (2" = 7),..., (@Y —72))

—T 2t =T+ -+ (2 -7, 2" —7)

and the desired result is obtained. m

Example 2.5 Denote the standard unit vectors in R® by €', and consider
the (very) mnon-convez set of unit vectors C = {e',... e"}. Then, for a given
x € R? we have

Po(x) = {e' | x; = max{xy,..., 24} }. (2.6)
Proof. The set C' has a finite number of elements so Po(z) # @. Let
i€ {l,...,d}, then
¢ €Po(z) = llz—c|<z—€| V)
=la-eP<fz-€ "
= [ =2z, )+ [l e [P<[ 2 [I* —2(z, &)+ [ & |I* V)
= —2m ") < -2(z,¢!) Vj
> (z,¢!) < (x,¢!) Vj
— z; <z Vj



which completes the proof. m

2.1 The classical Douglas—Rachford method

In this section we are ready to present and study the Douglas-Rachford
method. Given two sets C7,Cy of a real Hilbert space H, the Douglas-
Rachford operator is defined as:

I+ R02 R02

TC1,C2 - 9

Using the above operator which is known to be nonexpansive, the con-
vergence theorem of the methods is the following.

Theorem 2.6 Let C,Cy C H be non-empty, closed and convex and let
2% € H. Any sequence {z**!
such that Pg,(z) € C1 N Cy.

=Tc,.00 (:vk)}:;() converges weakly to a point z

See geometrical interpolation of the Douglas—Rachford iterative step for
two-sets CFP A, B in Figure 3 (taken Dr. D. Rubén Campoy Garcia thesis

[5])-

Figure 3: The iterative step of the Douglas—Rachford algorithm with the
two-set A and B.

while the classic algorithm can handle just two sets, there exists many
techniques to generalize it to solve the general CFP, that is: Find a point z

8



such that

N
re()C (2.7)
i=1
Recall the product and diagonal sets, C, D.
C= Cl X CQX,...,XCN = {(01,02,...,CN) ‘ Ci S Cl} (28)
D={(z"2? .. 2V) |2t =2® =-.. =2V} (2.9)
Then
DNC={( ... | ===, ¢ e}

So based on the above definition we get the following equivalent formu-
lation.

N
xEﬂCl- <~ (x,z,...,z)€CND
i=1

Now, the Douglas—Rachford algorithm applied to the sets C N D yields
a simultaneous version which operates in the appropriate product space. In
recent years several cyclic variants of the Douglas-Rachford method were
introduced. For example we present the result of [I, 6, 2, 3].
One cyclic variant of the Douglas—Rachford method requires the following
definition. Given

Ticicy..on) = Toy,cs Tox_yons -+ Tewcss Te,co- (2.10)

The convergence theorem of the method is given next.

Theorem 2.7 Let C1,Cy,...,Cny C H be closed and convex sets with a
nonempty intersection. For any starting point xy, define the sequence xp, 1 =
Ticy oy ...on)(@r). Then {xy} converges weakly to a point x such that Pe,(x) =
Fe,(x) for all indices i and j. Moreover, Pg,(x) € Ny, C;

See Figure 4 for illustration with three lines, taken again from [1].



T4 BcjTo = Te,aTB,cTa,BTo0

------------- P

Figure 4: Solid black arrows represent 2-set Douglas—Rachford iterations.

3 Implementation

In this section we present convex and non-convex CFP and apply the Douglas-
Rachford method for solving it. When more than two sets are involved, the
product space reformulation is used.

3.1 Convex setting

In this subsection we consider a quadratic CFP where the sets C; are balls
in RY, that is
Ci ={x e R?| ||z — ]| <72} (3.1)

10



where x; is the center of the ball and r; is the radius. The projection (also
the refelction) onto each ball has a closed form:

Xr, — T
P~ (z) = ‘ 2
o) = T =2 1

(3.2)

For the numerical testings we generated M random balls in R? of various
sizes. The idea is to first generate a random point z* € R? which is the solu-
tion of the generated CFP. Then, we pick random centers z; € R?, measure
it distance to x*, increase it by some random number and this is the radius
of the i-th ball. This construction ensure that the CFP has a solution x*.
Bellow in Figures 3.1-3.1 trajectories of the DR algorithm in R? are given.

//
6 o
4 /
* o

2 i P

A \\\_ et '

A N
0 { | Pl

1 %
= O //

Figure 5: Three circles example.
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[teration

15

10 [

Figure 6: Five circles example.

114 ‘u‘
\

112
ur
L N\
108 %

106

10.4
10 12

Dimension

14 16

Figure 7: The average number iterations needed for solving a 10 balls CFP
in varying dimensions.

3.2 Non-convex setting

3.2.1 The eight queen problem

The 8-queen puzzle is the problem of placing eight queens on a chess board
so that any queen threat the others using the standard chess queen move,

12



this mean that each row, column and diagonal have at most one queen, see
Figure 8.

NI 3 A Wi
7

6

0 1 >
4

3

, | &

1 ¥ EY

1 2 3 4 5 6 7 8

Figure 8: Standard queen’s move.

We start by showing how this problem can be remodeled as a feasibility
problem. We focus on a 8 x 8 chess board but clearly this can be extended
to any size board. So, consider a 8 x 8 matrix and place the value 1 if there
is a queen in this place on the board and 0 otherwise. See an example in
Figure 9. The chess board will look like :

N w0 B~ OO0 OO N 00
—_—

1 2 3 4 5 6 7 8
Figure 9: A Chess board .
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The constraints which are related to the queen’s move are given next.

1. Since in each row only one queen is allowed, we define the set in which
each row contains only 1 one and the rest is 0. We call it the C}
constraint .

C1 = {z € {0,1}*® | every row of x is a unit vector} (3.3)

N W b~ OO N

-1+ o N

1 2 3 4 5 6 7

Figure 10: Row constraints.

2. Since in each column only one queen is allowed, we define the set in
which each column contains only 1 one and the rest is 0. We call it the
C5 constraint

Cy = {x € {0,1}%*® | every column of z is a unit vector}.  (3.4)

14



N W B~ OO0 N

Tly v v v ¥y v v lvw
4

Figure 11: Column constraints.

3. Since in each diagonal only one queen is allowed, we define the set in
which each diagonal contains only 1 one and the rest is 0. We call it
the ('3 constraint. Observe that in a chess board there are 15 positive
sloped diagonal, and only 8 queens, which mean that 7 of the 15 positive
sloped diagonals are a zeros vectors.

Cs = {z € {0,1}%*® | every positive diagonal of x is a unit or zero vector}
(3.5)

"

N W R~ oo N

1 2 3 4 5 6 7

Figure 12: Positive slope diagonal.
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4. The negative slope constraints are similar to the positive slope con-
straints, but in the negative direction. So define the constraint set:

Cy = {x € {0,1}%*® | every negative diagonal of x is a unit or zero vector}

(3.6)

= N W s~ OO N

™~

1 2 3 4 S 6

-\ W

~l

Figure 13: Positive slope diagonal.

In order to apply the Douglas—Rachford algorithm we first transform the
problem into a continues form, that is {0,1}%*® = R®*® and show how the
projection (and then reflections) onto the non-convex sets C1, ..., Cy can be
easily implemented. This is mainly executed using Example 2.5. For example
see projection of a point z € R®*® onto (.

001 054 087 028 098 0.09 0.14 091 00001000
025 060 039 074 026 065 021 0.12 00010000
0.13 073 088 029 0.28 0.65 0.70 042 00100000
065 012 004 089 0.14 0.01 021 0.14 - 00010000
0.76 082 049 088 097 0.66 0.07 0.26 00001000
072 095 048 070 0.11 0.82 0.61 057 01000000
040 099 028 011 048 084 0.3 0.44 01000000
0.01 069 077 050 0985 0.0 0.77 0.86 00001000

Figure 14: Projection onto C1.

16



Next we present some numerical examples. We generate randomly 8 x 8
matrix with 8 ones and then run the Douglas—Rachford for solving it. The
results are presented in Figures 15-18 below.

1

—_ N LW B~ O O 1 Co
—_ N W B O O 1 oo
—_

1
abcdefgh abcdefgh

Figure 15: Solved in 154 iterations.

— W B O O N o
—_

—_ N W B O O 1 oo
—_

1
abocdefgh abcdefgh

Figure 16: Solved in 117 iterations.
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8 1] 8 1

1 A

6 (1] |11 6 1

5 5 1

4 411

3 3 1

2 1 2 1

(A 1 1
abcdefgh abcdefgh

Figure 17: Solved in 188 iterations.

8 1 8 1

7 1 M

6 11 6 1

5 51

4 4 1

3 1111 3 1

2 1 2 1

1 1 1 1

abcdefgh abcdefgh

Figure 18: Solved in 48 iterations.

3.2.2 Sudoku

As a final non-convex implementation we consider the puzzle which is Su-
doku. The Sudoku puzzle consists of a 9 x 9 grid and 3 x 3 subgrid that
composes the grid. The objective is to fill a 9 x 9 grid with digits so that
each column, each row, and each one of the nine 3 x 3 subgrids contain all
of the digits from 1 to 9.

18



In order to remodel the problem we convert the 9 x 9 Sudoku matrix (call
it A(i,j)) toa 9 x 9 x 9 cube (call it Q(i,j,k)), by the rules:

1, ifk=A(®,7)

Q. k) = {O, otherwise. (3.7)
1
4
2
5 4 7
8 3
1 9
3 4 2
S 1
8 6

Figure 19: A 9x9 Sudoku.

BEEER

Figure 20: Representation of the above as a cubic Sudoku.

The constraints which are related to the Sudoku puzzle are given next.

19



1. This constraint ensure that there is no repetition numbers in the Su-
doku’s rows.

Cy={Q € {0,...,9Y” | Q(i,:, k) is a standard unit vector Vi, k}
(3.8)
where Q(i,:, k) means that the j coordinate is free.

Figure 21: Row constraints.

2. This constraint ensure that there is no repetition numbers in the Su-
doku’s columns.

Co={Q €{0,...,9Y” | Q(:,j, k) is a standard unit vector Vj, k}
(3.9)

20



Figure 22: Column constraints.

3. This constraint ensure that there is no repetition numbers in the nine
3 x 3 subgrids.

//
/]
//
7]
// //
g
//
1
// //
/1
/|
p Y
// - 7 7
7 7
pd 4 4 /7
Z Z 7
7 7 7
P 7 7 v d
| P Z Z rd

Figure 23: 3 x 3 constraints.
4. This constraint ensure that there is only 1 in every height.

Cs ={Q €{o0,... ,9}93 | Q(i,7,:) is a standard unit vector Vj, k}
(3.10)

21



Figure 24: Height constraints.

5. This constraint ensure that the solution is compatible with the initial
Sudoku.

Ci={Q e {0,...,9 | QG,j, Al j)) = 1Vj, k} (3.11)

As before for the implementation of the Douglas—Rachford algorithm we
transform the problem into a continues form, that is {0,...,9} = RY
and show how the projection (and then reflections) onto the non-convex
sets C1,...,Cy can be easily implemented. As in the 8 queen puzzle, the
projections are based on Example 2.5.

Next we present numerical illustrations for Sudoku collection taken from
the internet.

22
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20936

1

59

1

1

398625

2 97 43

69 378 451
4 8 75

1

25963874

932651487
568247339

74

1

319475268

8 5 6| 1

27 4836

1

7

4
3

2

Figure 25: Solved in 974 iterations.

2

1

20973

354

1

49

1

1

2 8735

1

6738945

9

2735486

1

8456

79826

52647389

1

34589267

469

2873561

3519471628

2

1

I

3
8

4

6

39

2

1

Figure 26: Solved in 1915 iterations.
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2

1

71936

37 4

1

43

1

1

1

342587

1

78269

67983354

1

23694758

54 8§ 2

4

6| 7238895

1

89256

/35487962
287956

9 6

1

354

2

1

3
6

4

3|6

4 1

2 8

Figure 27: Solved in 686 iterations.

2

1

6 97

4769

8 5

1

1

862543

1

346793538
25843
9 7

1

1

29576438

8 3 92

7643829251
5171948326

493627

682153974

2

1

3

4|7

6 2

2

1

Figure 28: Solved in 374 iterations.
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Figure 29: Solved in 556 iterations.

12

9 2
9 1

—
ol B~ O o —I|oo s w
— oo NN | O Wl o o>
~N o w|lorh — oo N
0 Ul d (W N | — I~
O — ™| B~ ;1P W —
LW NN Bl N4 o o o
N ~J 0| W o o o
B~ O i o N |w N —
o W |~ o ©| &~ oo ro

3

Figure 30: Solved in 829 iterations.

Finally we show the number of iteration needed for solving a collection
of 1000 Sudoku puzzles. The average number of iterations is 879 iterations.
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4 Conclusions

In this project we are concern with feasibility problems and problems that
can be remodeled in such a way, convex and non-convex. We implement
the Douglas-Rachford algorithm in an appropriate product space for solving
these problems and shows its efficiency.
This project suggests that in some cases remodeling the problem can yield
better results than adjusting the algorithms. such an approach is the motiva-
tion of the newly introduced Superiorization methodology (http://math.haifa.ac.il/YAIR /bib-
superiorization-censor.html) which is and can be used for further research.
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