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1 Introduction

1.1 Dynamical systems

The study of dynamical systems, as its name would suggest, deals with
the theoretical and practical analysis of the evolution of processes. It
describes the motion of a process, attempts to predict its future state as
well as understand the limitations of these predictions. Some of these
processes are mathematical descriptions of various natural phenomena,
and thus those who study dynamical systems find themselves touching
on a wide range of subjects: from the computation of sea currents and
waves to the statistics of digits in the decimal expansion of π; from the
assessment of the damage from a tsunami to the prediction of the behav-
ior of a roulette ball. All these systems share the property of changing
over time. These changes are governed by the specific laws or dynamics
relevant to each system - Newtonian mechanics, the laws of probability,
linear transformations and so on.

Each dynamical system has two main parts that define it, namely a
phase space and a function describing its dynamics. The phase space is
a set containing all the possible states of the system at hand (with each
state being all the information about the system at a given time). Com-
plementarily, the dynamic function is a mapping between these states.
Although this definition suggests a very deterministic system, where the
application of the dynamic function to a selected initial state gives rise
to a pre-determined future state, there are systems in which this rule is
not necessarily true. Some dynamic systems are used to predict chaotic
or random processes, and some are used to analyze the current state
of a given system and try to deduce earlier states it may possibly have
originated form.

The choice of dynamic function plays a great role in the accuracy of
the model in being studied. Most times the exact function describing
a process is unknown, and finding an approximation is a challenging
task. Moreover, functions need not be static, and are generally time-
dependent and defined as Φ = Φ(t, ω) ∈ T × Ω → Ω (meaning they
are a function of both time and state). This flexibility allows a model
to correctly describe a changing environment or decreasing information
about a process as time passes.

In discussing dynamical systems, normed, complete spaces (Banach
spaces) are usually chosen to describe the phase space, because it is quite
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helpful if the possibility exists to determine whether or not two states
are ”close”, or at least ”closer” than others. In this way it is possible to
tell where a process is heading and investigate its asymptotic behavior,
as well as learn about its stability when changing initial values.

A mathematical definition of a dynamical system is a triple (T,Ω,Φ),
defining the time-space, phase-space and dynamic function. It is some-
times useful to observe the function for all points in the set at a given
time (notated as Φt0(ω)), or as a trajectory through time from a given
point (γω0(t)), and we will expand on these ideas later on.

1.2 Semigroups

A semigroup (G; ∗) is generally defined as a set G on which the binary
operator ∗ is defined, and the associativity law (x∗y)∗z = x∗(y∗z) holds
(and that is the only requirement!). In the case of dynamical systems,
the composition of functions operator (notated ◦) is usually chosen as the
semigroup operator, and the sets are usually functions mapping from the
phase space onto itself. Thus, they are known as composition semigroups.
This area of study, namely composition semigroups on spaces of analytic
functions will be considered in this project. For these semigroups we
will assume that the set G is closed under the composition operator
(f1, f2 ∈ F → f1 ◦ f2 ∈ F ), and that a unity exists, i.e. ∃fu ∈ F : ∀f ∈
F, fu ◦ f = f ◦ fu = f .

The choice of a set representing time is also of importance. This
set, often called a monoid and defined as a semigroup with an identity
element, is a basic feature of any dynamical system. It governs the space
through which the process evolves, and can usually be thought of as
”time”, although geometrical interpretations are possible as well. The
types of systems have different dynamic functions or a different monoid
describing time. Time can, for example, be a negative number for those
systems involved in deduction of past events, or a real number for systems
describing continuous processes. In fact, the choice of monoid used in
defining a system is a useful way of classifying it, distinguishing between
maps (using discrete, positive time N), invertible maps (Z), semi-flows
(R+) and flows (R), for example.

In this project, our chosen monoid will be that of positive, continuous
time (R+), as we are investigating the asymptotic future behavior only.
The functions preoccupying us will be holomorphic (analytic) maps over
the sets of the unit disk or the right half of the complex plane.
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2 Preliminaries

We denote by Hol(D,C) the set of all holomorphic functions on a domain
D ⊂ C, and by Hol(D) the set of all holomorphic self-mappings of D.

We say that a family S = {Ft}t≥0 ⊂ Hol(D) is a one-parameter
continuous semigroup on D (semigroup, in short) if:

(i) Ft(Fs(z)) = Ft+s(z) for all t, s ≥ 0 and z ∈ D1, and

(ii) lim
t→0+

Ft(z) = z for all z ∈ D.

In the case when D is the open unit disk Δ = {z : |z| < 1}, it
follows from a result of E. Berkson and H. Porta [1] that each semigroup
is differentiable with respect to t ∈ R+ = [0,∞). So, for each one-
parameter continuous semigroup S = {Ft}t≥0 ⊂ Hol(Δ), the limit

lim
t→0+

z − Ft(z)

t
= f(z), z ∈ Δ,

exists and defines a holomorphic mapping f ∈ Hol(Δ,C). This mapping
f is called the (infinitesimal) generator of S = {Ft}t≥0 . Moreover, the
function u(t, z) := Ft(z), (t, z) ∈ R+ × Δ, is the unique solution of the
Cauchy problem 





∂u(t, z)

∂t
+ f(u(t, z)) = 0,

u(0, z) = z, z ∈ Δ.

(2.1)

In the same paper, Berkson and Porta proved that a function f ∈
Hol(Δ,C) is a semigroup generator if and only if there exist both some
function p ∈ Hol(Δ,C) with Re p(z) ≥ 0, and a point τ ∈ Δ, such that

f(z) = (z − τ)(1− zτ̄)p(z). (2.2)

This representation is unique. Moreover, if S contains neither the identity
mapping nor an elliptic automorphism of Δ, then τ is a unique attractive
fixed point of S, i.e., lim

t→∞
Ft(z) = τ, ∀ z ∈ Δ, and lim

r→1−
Ft(rτ) = τ . The

point τ is called the Denjoy–Wolff point of S.
Recently the asymptotic behavior of semigroups including the local

geometry of semigroup trajectories near their boundary Denjoy–Wolff

1This is sometimes called the ”semigroup property”. Note that it means the semi-
group is closed under addition over the monoid T = R+.
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Figure 2.1: The interior Denjoy–Wolff point is the limit of all trajectories regardless
of starting point.

point have been attracting a lot of attention. It was shown in [4] that if

τ ∈ ∂Δ, then the angular derivative f ′(τ) = ∠ lim
z→τ

f ′(z) = ∠ lim
z→τ

f(z)

z − τ
of

f at the point τ ∈ ∂Δ exists and is a non-negative real number. One dis-
tinguishes between two cases: (a) f ′(τ) > 0 (the hyperbolic case), and (b)
f ′(τ) = 0 (the parabolic case). We will limit our discussion in this project
to semigroups of the parabolic type, but to underline the essential dif-
ference between the two types we will bring to the reader’s attention the
following known fact: there is an essential difference between semigroups
of the hyperbolic and parabolic types; in the hyperbolic case, the limit
tangent line depends on the initial point of the trajectory, whereas in the
parabolic case all the trajectories have the same tangent line (if such a
line exists). See Fig. 2.2 and [2, 8, 10, 5, 9] for details. In the hyper-
bolic case the semigroup trajectories always have tangent lines passing
through the Denjoy–Wolff point, in the parabolic case this claim is not
certain.

Since any trajectory γz = {Ft(z), t ≥ 0} , z ∈ Δ, is an analytic curve,
it has a finite curvature at each its point Fs(z). Following the notion in
[6], for each z ∈ Δ we denote by κ(z, s) the curvature of the trajectory
γz at the point Fs(z) and by κ(z) the limit curvature of the trajectory :
κ(z) := lim

s→∞
κ(z, s) (if it exists). Therefore, the above question is equiv-

alent to the following one: When does the limit curvature of a semigroup
trajectory exist finitely?

From now on, we assume without loss of generality that τ = 1. It
turns out (see [8]) that two hyperbolic type semigroups having similar
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Figure 2.2: The existence and uniqueness (for different initial points) of the tangent
line depends on the semigroup type.

asymptotic behavior actually coincide up to re-scaling. This fact is not
longer true for parabolic type semigroups. Moreover, if the generator f
of a semigroup S = {Ft}t≥0 admits the representation

f(z) = b(1− z)2 + o((1− z)2),

then for each z ∈ Δ, the limit tangent line to the trajectory γz = {Ft(z)}t≥0

exists with
lim
t→∞

arg(1− Ft(z)) = − arg b,

hence, does not depend on z ∈ Δ as well as on the remainder o((1− z)2)
(see [8] and Theorem 2.2 (i) below).

To answer the questions above for a semigroup S = {Ft}t≥0 gener-
ated by f ∈ Hol(Δ,C), we apply a linearization model given by Abel’s
functional equation

h (Ft(z)) = h(z) + t. (2.3)

It is rather simple to see that the function h : Δ 7→ C defined by

h′(z) = −
1

f(z)
, h(0) = 0, (2.4)

solves equation (2.3). This function is univalent and convex in the pos-
itive direction of the real axis due to (2.3). Sometimes it is called the
Kœnigs function for the semigroup (see [2, 8, 10, 14] and [9]).
In the parabolic case we can see more subtlety than in its hyperbolic
counterpart, in that there are some semigroups which converge to the
boundary Denjoy–Wolff point tangentially, as well as known examples of
non-tangentially converging semigroups (see [2, 3, 5, 8]).
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M. D. Contreras and S. Dı́az-Madrigal in [2] have considered the
set Slope+(γz) of all accumulation points (as t → ∞) of the function
arg (1− Ft(z)) and proved that these sets coincide for all z ∈ Δ. In
addition, they have proven that if for a function h defined by (2.4), the
image h(Δ) lies in a horizontal half-plane, then all the trajectories γz
tend tangentially to τ = 1. In addition, Slope+(γz) is a single point
which is equal to either π/2 or −π/2. In general the question whether
Slope+(γz) is a singleton is still open (see [2, 10]).

Inasmuch as we are updated, all known results in this vein require
some smoothness conditions at the Denjoy–Wolff point. For example, if
the semigroup generator f is twice differentiable at the boundary Denjoy–
Wolff point τ = 1, then all the trajectories γz converge to this point
tangentially if and only if Re f ′′(1) = 0 (see [8]).

An advanced question in this study, recently raised by Elin and
Shoikhet [6] is: how close is a semigroup trajectory to its tangent line? In
particular, one can ask: Is there such a circle sharing the same tangent
line at the Denjoy-Wolff point, so that the trajectories lie between this
circle and the line? See Fig. 2.3.

F z( )t

Figure 2.3: An advanced question: Is there such a circle sharing the same tangent
line at the Denjoy-Wolff point, so that the trajectories lie between this circle and the
line?

Furthermore, it may happen that for each z ∈ Δ, there is a horodisk
D(τ, k) := {ζ ∈ Δ : d(ζ, τ ) < k} , k = k(z), internally tangent to the
unit circle at the point τ , such that the trajectory γz lies outside D(τ, k).
In this case we say that the semigroup S converges to τ strongly tan-
gentially. It is clear that the supremum of the radii of such horodisks
coincides with the limit curvature radius. Conversely, if a semigroup
converges tangentially but not strongly tangentially, then its trajectories
have infinite limit curvature.
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For generators differentiable three times at the boundary Denjoy–
Wolff point τ with f ′′′(τ) = 0, the following rigidity phenomenon was es-
tablished in [13]: The semigroup S generated by f converges to τ strongly
tangentially if and only if it consists of parabolic automorphisms of Δ
(i.e., its trajectories have finite curvature).

The question on the finiteness of the limit curvature is a general prob-
lem which is also relevant for non-tangentially converging semigroups. In
addition, one can ask: might κ(z) be finite for some points z ∈ Δ and
infinite for others? In [6], the following answers were presented for semi-
groups generated by functions which are (3 + ε)-smooth at the Denjoy–
Wolff point.

Theorem 2.1 Let S = {Ft}t≥0 be a semigroup generated by f ∈ C3+ε(1),
i.e.,

f(z) = b(1− z)2 + c(1− z)3 +R(z), (2.5)

where R ∈ Hol(Δ,C), lim
z→1

R(z)

(1− z)3+ε
= 0, and let b 6= 0.

(a) If Im
c

b2
6= 0, then all of the trajectories have infinite limit curvature,

i.e., κ(z0) = ∞ for each z0 ∈ Δ.

(b) Otherwise, if Im
c

b2
= 0, then each trajectory {Ft(z0), t ≥ 0} has a

finite limit curvature, namely, κ(z0) =
∣
∣2C

b

∣
∣, where

C = |b|2 Imh(z0) + Im b+

∞∫

0

Im

(
f (Fs(1)) b

(1− Fs(0))2
−

cb

b(s+ 1)

)

ds.

Thus, under the above assumptions if κ(z) is finite for some z ∈ Δ,
then it must be finite for all z ∈ Δ.

Once again, one can see that there is a cardinal difference between
semigroups of hyperbolic and parabolic types: in the hyperbolic case
with some smoothness conditions the limit curvature is always finite,
while in the parabolic case the limit curvature may be infinite. At the
same time, it follows from [13] that if the second derivative f ′′(1) is
purely imaginary, then the third derivative f ′′′(1) should be real. Thus,
an immediate consequence of part (b) of Theorem 2.1 is the following
fact:
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Corollary 2.1 Let {Ft}t≥0 be a semigroup of holomorphic self-mappings
of the open unit disk Δ generated by f ∈ C3+ε(1) of the form (2.5) with
b 6= 0. If Re b = 0, then each semigroup trajectory converges to τ = 1
strongly tangentially.

As a matter of fact, theorem 2.1 is based on the following general
result which contains complete quantitative characteristics of the asymp-
totic behavior for semigroups generated by functions smooth enough at
the boundary Denjoy–Wolff points.

Theorem 2.2 (see [6] and [8]) Let S = {Ft}t≥0 be a continuous semi-
group of holomorphic self-mappings of the open unit disk Δ, and let f be
its generator.

(i) Suppose that f admits the following representation:

f(z) = b(1− z)2 +R(z), (2.6)

where R ∈ Hol(Δ,C), lim
z→1

R(z)

(1− z)2
= 0. Then

1

1− Ft(z)
= −bt+G(z, t), where lim

t→∞

G(z, t)

t
= 0, (2.7)

and

lim
t→∞

(
1

1− Ft(z)
−

1

1− Ft(0)

)

= −bh(z). (2.8)

(ii) If b 6= 0 and R in (3.12) is of the form R(z) = c(1 − z)3 + R1(z)

with R1 ∈ Hol(Δ,C), lim
z→1

R1(z)

(1− z)3
= 0, i.e., f admits the represen-

tation:
f(z) = b(1− z)2 + c(1− z)3 +R1(z), (2.9)

then

1

1− Ft(z)
= −bt−

c

b
log(t+ 1) +G1(z, t), (2.10)

where lim
t→∞

G1(z, t)

log(t+ 1)
= 0, and

lim
t→∞

t

(
1

1− Ft(z)
−

1

1− Ft(0)
+ bh(z)

)

= −
c

b
h(z). (2.11)

12



3 Main Results

In the present project we are going to study similar characteristics for
asymptotic behavior of the parabolic type semigroups generated by f ∈
Hol(Δ,C) of the form:

f(z) = a(1− z)1+r +R(z), (3.12)

where R ∈ Hol(Δ,C), lim
z→1

R(z)

(1− z)1+r
= 0.

This case is a generalized version of theorem 2.1, valid for any r ∈ (0, 2].
The conclusions derived in [6] are a specific case of this new, generalized
formula, which can be applied to a broader set of infinitesimal generator
functions. Clearly, setting r = 1 will re-produce those earlier results.
Although the first part of this result was already described in [10], the
second part is new. In sections 4 and 5 we provide new proofs for both
old and new assertions, for the sake of completeness. There, given a little
more information about the generator’s form, we intend to show that the
following result can be obtained:

Theorem 3.1 Let S = {Ft}t≥0 be a continuous semigroup of holomor-
phic self-mappings of the open unit disk Δ and let f be its generator.

(i) Suppose that f admits the representation (3.12).
Denote γ = 2r−1ar, then

2

1− Ft(z)
= (γt)

1
r +G(z, t), where lim

t→∞

G(z, t)

t
1
r

= 0, (3.13)

and

lim
t→∞

((
1 + Ft(z)

1− Ft(z)

)r

−

(
1 + Ft(0)

1− Ft(0)

)r)

= γh(z). (3.14)

(ii) If a 6= 0 and R in (3.12) is of the form R(z) = b(1 − z)1+2r +

R1(z) with R1 ∈ Hol(Δ,C), lim
z→1

R1(z)

(1− z)1+2r
= 0, i.e., f admits the

representation:

f(z) = a(1− z)1+r + b(1− z)1+2r +R1(z). (3.15)
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Denote λ = 2rb
a
. Then

(
2

1− Ft(z)

)r

= γt+ λ log(t+ 1) +G1(z, t), (3.16)

where lim
t→∞

G1(z, t)

log(t+ 1)
= 0. Moreover,

lim
t→∞

(t+ 1)

(
2

1− Ft(z)
−

2

1− Ft(0)
− γh(z)

)

= λh(z), (3.17)

(3.16) can be re-written in a more pleasing way. We will show this
more optimized formula here and add its derivation in section 5.

2

1− Ft(z)
= (γt)

1
r +

λ

r
(γt)

1
r
−1 log(t+ 1) + Γ1(t), (3.18)

with lim
t→∞

Γ1(t)(
log(t+ 1)

t

) = 0.

4 The right half-plane model

For ease of proof we first transfer the study of the semigroup behavior
from the open unit disk to right half-plane by using the Cayley transform

C(z) =
1 + z

1− z
.

Now, given a semigroup S = {Ft}t≥0 ⊂ Hol(Δ) with the Denjoy–Wolff
point τ = 1, we construct the semigroup Σ = {Φt}t≥0 of holomorphic
self-mappings of the right half-plane Π = {w ∈ C : Rew > 0} as follows:

Φt(w) = C ◦ Ft ◦ C
−1(w) (4.1)

with the Denjoy–Wolff point at ∞

Φt(w) = C ◦ Ft ◦ C
−1(∞) = C ◦ Ft(τ) = C(τ) = ∞.

If S is continuous (hence, differentiable) in t, then Σ is too. More pre-
cisely, let f be the infinitesimal generator of S. Then by (2.2), f must
be of the form f(z) = −(1− z)2p(z) with Re p(z) ≥ 0, z ∈ Δ.

14



Differentiating Φt given by (4.1) at t = 0+, we conclude that Σ is
generated by the mapping −φ,

φ(w) = −C ′
(
Ft

(
C−1(w)

)) (
F ′
t

(
C−1(w)

))
= 2p

(
C−1(w)

)
(4.2)

(cf., [7, Lemma 3.7.1]). So, φ ∈ Hol(Π,Π) and the semigroup Σ = {Φt}t≥0

satisfies the Cauchy problem





∂Φt(w)

∂t
= φ (Φt(w)) ,

Φt(w)|t=0 = w, w ∈ Π.

(4.3)

Concerning the Kœnigs function h defined by (2.4), one can modify
it to σ := h ◦ C−1. By direct calculations we check that for all w ∈ Π
this modified function satisfies Abel’s functional equation

σ (Φt(w)) = h ◦
(
Ft ◦ C

−1(w)
)
= h ◦

(
C−1(w)

)
+ t = σ(w) + t, (4.4)

as well as the initial value problem:

σ′(w) =
1

φ(w)
, σ(1) = 0. (4.5)

It was already mentioned that the angular derivative a = f ′(1) al-
ways exists and a ≥ 0. If, in addition, f ∈ C1+2r(1), then f admits
representation

f(z) = a(1− z)1+r + b(1− z)1+2r +R(z) z ∈ Δ, (4.6)

with

lim
z→1−

R(z)

(1− z)1+2r
= 0.

Suppose now that the semigroup S generated by f is of parabolic type.
For this type, as proven in [10], we have 0 < r ≤ 2 in (4.6).

By the Berkson–Porta representation (2.2) with τ = 1 and formu-
las (4.2), (4.6), the function φ can be represented as follows:

φ(w) = −2r−1a(w + 1)1−r − 22r−1b(w + 1)1−2r + ρ(w), (4.7)

where

∠ lim
w→∞

ρ(w)

(w + 1)1−2r
= 0 (4.8)
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Since Σ has the Denjoy–Wolff point at ∞, we have by Julia’s Lemma
(see, for example, [11, 12, 9]) that ReΦt(w) is an increasing function
in t ≥ 0. The tangential convergence of the semigroup means that the

function
ImΦt(w)

ReΦt(w)
is unbounded as t tends to infinity. Roughly speak-

ing, the semigroup converges tangentially when | ImΦt(w)| grows faster
than ReΦt(w). Moreover, the original semigroup S = {Ft}t≥0 converges
strongly tangentially if and only if the function ReΦt(w) is bounded for
each w with Rew > 0. For this reason, strongly tangentially conver-
gent semigroups were referred to in [3] as semigroups of finite shift ; and
weakly tangentially convergent semigroups as semigroups of infinite shift.
Therefore, a semigroup S converges strongly tangentially if and only if
each trajectory of the semigroup Σ defined by (4.1) has a vertical asymp-
tote. More generally, a semigroup trajectory in the open unit disk has a
finite limit curvature if and only if the corresponding trajectory in the
right half-plane has an asymptote as t → ∞.

Next we will consider parabolic type semigroups in the right half-
plane.

5 Proofs

First let us consider the case when parabolic type semigroup Σ = {Φt}t≥0

of the right half-plane generated by −φ of form

φ(w) = A(w + 1)1−r + %(w), (5.1)

where % ∈ Hol(Π,C), ∠ lim
w→∞

%(w)

(w + 1)1−r
= 0.

Theorem 5.1 Let {Φt}t≥0 ∈ Hol(Π) be a semigroup of parabolic type
with the Denjoy–Wolff point at ∞ generated by mapping −φ.

Then

Φt(w) = (γt)
1
r + Γ(w, t), where lim

t→∞

Γ(w, t)

t
1
r

= 0, (5.2)

and
lim
t→∞

((Φt(w))
r − (Φt(1))

r) = γσ(w), (5.3)

where σ is defined by (4.5) and γ = Ar.
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Proof. Fix w ∈ Π and consider Φt(w) as a (complex valued) function
of the real variable t. This function tends to infinity as t → ∞. Thus,
by the L’Hospital rule

lim
t→∞

(Φt(w) + 1)r

t+ 1
= lim

t→∞

r (Φt(w) + 1)r−1 φ (Φt(w))

1
=

lim
t→∞

r

(

A+
% (Φt(w))

(Φt(w))
1−r

)

= γ. (5.4)

Thus,

lim
t→∞

Φt(w)

t
1
r

= lim
t→∞

Φt(w)

t
1
r

∙
Φt(w) + 1

Φt(w)
∙

(
t

t+ 1

) 1
r

= lim
t→∞

(Φt(w) + 1)

(t+ 1)
1
r

= γ
1
r .

This proves formula (5.2). Furthermore,

lim
t→∞

((Φt(w))
r − (Φt(1))

r)

= lim
t→∞

∫ w

1

((Φt(z))
r)

′
dz = lim

t→∞
r

∫ w

1

(Φt(z))
r−1 φ (Φt(z))

φ(z)
dz

= lim
t→∞

r

∫ w

1

(
Φt(z)

Φt(z) + 1

)r−1
1

φ(z)

(

A+
% (Φt(z))

(Φt(z))
1−r

)

dz

= γ

∫ w

1

dz

φ(z)
= γσ(w)

by (5.4). �

It turns out that in case the function ρ can be represented in the

form ρ(w) = B(w + 1)1−2r + %1(w) such that lim
w→∞

%1(w)

(w + 1)1−2r
= 0,

we can achieve a more precise estimate for the asymptotic behavior of
Σ = {Φt}t≥0. This is, in fact, the main part of this project, transformed
into the half-plane. Using the inverse Cayley’s transform we will convert
its proof given here to show the validity of the correlating assertions in
Δ, made in theorem 3.1.

Theorem 5.2 Let {Φt}t≥0 ∈ Hol(Π) be a semigroup of parabolic type
with the Denjoy–Wolff point at ∞ generated by mapping −φ.

φ(w) = A(w + 1)1−r +B(w + 1)1−2r + %1(w), (5.5)

17



with A 6= 0, %1 ∈ Hol(Π,C) and lim
w→∞

%1(w)

(w + 1)1−2r
= 0.

Then, denoting γ = Ar and λ = B
A
, we have

Φt(w) = (γt)
1
r − 1 +

λ

r
(γt)

1−r
r log(t+ 1) + Γ(w, t) (5.6)

with lim
t→∞

Γ(w, t)

t
1−r
r log(t+ 1)

= 0.2 Moreover,

lim
t→∞

(t+ 1) ((Φt(w) + 1)r − (Φt(1) + 1)r − γσ(w)) = λσ(w). (5.7)

Proof. First we show that

lim
t→∞

1

log(t+ 1)
((Φt(w) + 1)r − γt− λ log(t+ 1)) = 0. (5.8)

One can calculate

d

ds
((Φs(w) + 1)r − γs− λ log(s+ 1)) =

= r (Φs(w) + 1)r−1 φ (Φs(w))− γ − λ
1

s+ 1
=

=
r

s+ 1

(

B
s+ 1

(Φs(w) + 1)r
−

λ

r
+

ρ1(Φs(w))(s+ 1)

(Φs(w) + 1)1−r

)

=
r

s+ 1

(

B

(
s+ 1

(Φs(w) + 1)r
−

1

γ

)

+
ρ1(Φs(w))

(Φs(w) + 1)1−2r

s+ 1

(Φs(w) + 1)r

)

,

where by (5.4) and (5.5) it follows that

lim
s→∞

(

B

(
s+ 1

(Φs(w) + 1)r
−

1

γ

)

+
ρ1(Φs(w))

(Φs(w) + 1)1−2r

s+ 1

(Φs(w) + 1)r

)

= 0.

Therefore, it follows that for each ε > 0 there exists t0 > 1 such that for
all s > t0 we have

∣
∣
∣
∣B

(
s+ 1

(Φs(w) + 1)r
−

1

γ

)

+
ρ1(Φs(w))

(Φs(w) + 1)1−2r

s+ 1

(Φs(w) + 1)r

∣
∣
∣
∣ <

ε

r
.

2if r < 1 we can insert the constant 1 into Γ without changing the limit below,
but if r > 1 the constant is not part of the remainder.
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While, for each 0 ≤ s ≤ t0 there exists a positive real number K, such
that

∣
∣
∣
∣B

(
s+ 1

(Φs(w) + 1)r
−

1

γ

)

+
ρ1(Φs(w))

(Φs(w) + 1)1−2r

s+ 1

(Φs(w) + 1)r

∣
∣
∣
∣ <

K

r
.

So,
|(Φt(w) + 1)r − γt− λ log(t+ 1)|

=

∣
∣
∣
∣

∫ t

0

d

ds
((Φs(w) + 1)r − γs− λ log(s+ 1)) ds+ (w + 1)r

∣
∣
∣
∣

≤

∣
∣
∣
∣

∫ t0

0

K

s+ 1
ds

∣
∣
∣
∣+

∣
∣
∣
∣

∫ t

t0

ε

s+ 1
ds

∣
∣
∣
∣+ |(w + 1)r|

= ε ln(t+ 1) + (K − ε) ln(t0 + 1) + |(w + 1)r| .

Thus,
1

log(t+ 1)
|(Φt(w) + 1)r − γt− λ log(t+ 1)|

≤

∣
∣
∣
∣ε+ (K − ε)

ln(t0 + 1)

ln(t+ 1)
+

(w + 1)r

ln(t+ 1)

∣
∣
∣
∣ .

Since, ε > 0 is arbitrary, then (5.8) follows, and

(Φt(w) + 1)r = γt+ λ log(t+ 1) + Γ1(w, t) (5.9)

with lim
t→∞

Γ1(w, t)

log(t+ 1)
= 0. One can calculate

Φt(w) + 1 =
(
γt+ λ log(t+ 1) + Γ1(w, t)

) 1
r

= (γt)
1
r

(

1 +
λ

γt
log(t+ 1) +

Γ1(w, t)

γt

) 1
r

= (γt)
1
r

(

1 +
λ

γr

log(t+ 1)

t
+ Γ̃1(w, t)

)

= (γt)
1
r +

λ

r
(γt)

1−r
r log(t+ 1) + Γ(w, t),

where lim
t→∞

tΓ̃1(w, t)

log(t+ 1)
= 0, hence lim

t→∞

Γ(w, t)

t
1−r
r log(t+ 1)

= 0. This proves

formula (5.6). In addition,

lim
t→∞

(t+ 1)
(
(Φt(w) + 1)r − (Φt(w) + 1)r(1)− γσ(w)

)
=
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lim
t→∞

(t+ 1) ∙
∫ w

1

((Φt(z) + 1)r − γσ(z))′ dz =

lim
t→∞

(t+ 1) ∙
∫ w

1

r(Φt(z) + 1)r−1φ (Φt(z))− γ

φ(z)
dz.

One can calculate

lim
t→∞

(t+ 1)
(
r(Φt(z) + 1)r−1φ (Φt(z))− γ

)
=

= lim
t→∞

t+ 1

(Φt(z) + 1)r

(

Br +
ρ1(Φt(z))r

(Φt(z) + 1)1−2r

)

= λ.

So,
lim
t→∞

(t+ 1) ((Φt(w) + 1)r − (Φt(1) + 1)r − γσ) = λσ(w).

This proves (5.7). �

We will now show how this proof correlates with our assertions on
semigroups over Δ.

5.1 Proof of the main results

In this section we will prove the assertions made in theorem 3.1.
Let S = {Ft}t≥0 be a continuous semigroup of holomorphic self-mappings
of the open unit disk Δ and let f be its generator.

Suppose that f admits the representation (3.12), and in the same
fashion as before denote γ = 2r−1ar. We have shown that since f fulfills
the requirements set out in (4.6), we can define a semigroup Φt in the
right half-plane generated by −φ which is of the form (4.7), a specific case
of the form (5.1) which is the one described in theorem 5.1. Recalling
our definition of Φt(w) in the right half-plane model,

Φt(w) , C ◦ Ft(z) ◦ C
−1(w),

clearly
C ◦ Ft(z) = Φt ◦ C(z). (5.10)

Or, more literally,
1 + Ft(z)

1− Ft(z)
= Φt(C(z)).
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Combining this with (5.2) proven earlier, we see that

1 + Ft(z)

1− Ft(z)
= Φt(C(z)) = (γt)

1
r + Γ(C(z), t),

and since lim
t→∞

Γ(C(z), t)

t
1
r

= 0, by defining

G(z, t) , Γ(C(z), t) + 1,

we get the necessary

lim
t→∞

G(z, t)

t
1
r

= 0,

and (3.13) is proven.
Next, continuing from (5.3), we can use formula (5.10) and the con-

nection between σ(w) and h(z), h(z) = σ(C(z)), to get

lim
t→∞

C(Ft(z))
r − C(Ft(0))

r = γσ(C(z)),

or

lim
t→∞

((
1 + Ft(z)

1− Ft(z)

)r

−

(
1 + Ft(0)

1− Ft(0)

)r)

= γh(z),

which has been put forward earlier as (3.14).
Additionally, since for the same f we can be write φ in the same

manner as in (5.5), we can apply the same method to (5.9) which was a
step in the proof of theorem 5.2 . Now we can see that

(1 + Φt(C(z)))r =

(
2

1− Ft(z)

)r

= (γt) + λ log(t+ 1) + Γ1(C(z), t),

with lim
t→∞

Γ1(C(z), t)

log(t+ 1)
= 0.

Simply by defining G(z, t) , Γ1(C(z), t) we get (3.16) as an immedi-
ate consequence.

Lastly, to prove (3.17), we start with (5.7) in the same theorem.
Utilizing the same connections given by Cayley’s transform shown above
between F and Φ, h and σ we find

lim
t→∞

(t+ 1) ((Φt(C(z)) + 1)r − (Φt(C(0)) + 1)r − γσ(C(z)))

= lim
t→∞

(t+ 1)

((
2

1− Ft(z)

)r

−

(
2

1− Ft(0)

)r

− γh(z)

)

= λσ(C(z)) = λh(z),
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which is what we set out to prove.
We have claimed earlier that One of the main results, (3.16), can be

re-written in a more pleasing way. We will, as a final word, show this
more optimized formula’s derivation.
Starting with (3.16), and raising both sides of the equation by a power
of 1

r
,

2

1− Ft(z)
= [γt+ λ log(t+ 1) +G1(z, t)]

1
r = (5.11)

(γt)
1
r

[

1 +
λ log(t+ 1)

γt
+

G

γt

] 1
r

= (γt)
1
r

[

1 +
1

r

(
λ log(t+ 1)

γt
+

G

γt

)

+ Γ(t)

]

with lim
t→∞

Γ(t)
(
log(t+ 1)

t

) = 0.3

Thus, we can re-state (3.16) as we had in (3.18):

2

1− Ft(z)
= (γt)

1
r +

λ

r
(γt)

1
r
−1 log(t+ 1) + Γ1(t),

with lim
t→∞

Γ1(t)(
log(t+ 1)

t

) = 0. �

3This last step is due to the formula (1+α)β = 1+αβ+r(α, β) with lim
α→0

r(α, β)

α
= 0
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