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Abstract

In this project we are concern with the Common Fixed Point Prob-
lem (CFPP) with demi-contractive operators and its special instance,
the Convex Feasibility Problem (CFP) in real Hilbert spaces. Moti-
vated by the recent result of Ordoñez et al. [35] and in general, the
field of real-time/online algorithms [31, 21, 20], in which the entire
input is not available from the beginning and given piece-by-piece,
we propose an online block-iterative scheme for solving CFPPs and
CFPs in which the involved operators/sets emerge along time. This
scheme is capable of operating on any block, for any finite number of
iterations, before moving, in a serial way, to the next block.

The scheme is based on the recent novel result of Reich and Zalas
[37] known as the Modular String Averaging (MSA) procedure. Con-
vergence of the scheme is then follows [37] as well as classical results
in the fields of fixed point theory and variational inequalities, such as
[34]).

Numerical experiments for linear and non-linear feasibility prob-
lems with applications to image recovery are presented and demon-
strate the validity and the potential applicability of the new scheme,
which can be used for online scenarios, for example.
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1 Introduction

In this project we are concern with the Common Fixed Point Problem (CFPP)
and its special instance, the Convex Feasibility Problem (CFP) in real Hilbert
spaces H (with the inner product 〈., .〉, and the induced norm ‖.‖). Given op-
erators Ui : H → H, for i ∈ I := {1, 2, . . . ,m}, with non-empty fixed points
sets, the common fixed points problem consists of finding a point x∗ ∈ H
such that

x∗ ∈ ∩mi=1 Fix (Ui) . (1.1)

In the convex feasibility problem, we are given m non-empty, closed and
convex sets Ci ⊆ H for i ∈ I. The problem is then formulated as finding a
point x∗ ∈ H such that

x∗ ∈ ∩mi=1Ci 6= ∅. (1.2)

It is clear that if we choose Ui = PCi for all i ∈ I, where PCi denotes the
orthogonal projection onto the i-th set Ci (will be explained further) in the
CFPP (1.1), then the CFP (1.2) is obtained.

The CFPP and the CFP serve as essential modelling tools which stand at
the core of many significant real-world problems, for example in imaging, sen-
sor networks, radiation therapy treatment planning, resolution enhancement
and in many others; see e.g., [14, 5]. One of the earliest iterative procedure
for solving CFPPs, see e.g., [34], has the following general form: choose an
arbitrary starting point x0 ∈ H

xk+1 = T (xk) (1.3)

where the operator T : H → H is fixed and depends on the family of operators
{Ui : H → H | i ∈ I}. A more general fixed point scheme allows to include a
family of operators {Tk : H → H}∞k=0; for example see the generalized Opial
method [11, Section 3.6]. The iterative procedure is formulated as follows:
choose an arbitrary starting point x0 ∈ H

xk+1 = Tk(x
k) (1.4)

where the family of operators {Tk}∞k=0 depends on {Ui}i∈I and could have
different algorithmic structures, such as

1. Cyclic (with relaxation): αk ∈ [ε, 2−ε], for ε > 0: Tk = Ui(k), where
i(k) = (kmodm) + 1;
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2. Simultaneous: Tk := 1
m

∑m
i=1 Ui;

3. Composition: Tk :=
∏m

i=1 Ui.

4. Greedy (remotest-set): Tk := Uik , where ik = argmaxi∈I dist(·,Fix(Ui));
where dist(·, ·) is the distance function between a point and a set.

Going back to the Convex Feasibility Problem (CFP), we wish to focus on
the class of projection methods. In the 1930s Kaczmarz [30] and Cimmino
[17] introduced iterative projection methods for solving systems of linear
inequalities Ax ≤ b, where A ∈ Rm×n, x ∈ Rn and b ∈ Rm. It appears that
this problem can be easily converted to an equivalent CFP by the following:
denote by Ai and bi the i-th row and entry of A and b, respectively. Define
the set (half-space):

H−i := {z ∈ Rn |
〈
Ai, z

〉
≤ bi} (1.5)

Figure 1: Geometric interpretation of a Half-space H−i .

and then we obtain:

Ax ≤ b⇔ x ∈ ∩mi=1H
−
i (1.6)

Figure 2: Geometric interpretation of the intersection of half-spaces
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Kaczmarz [30] and Cimmino [17] methods use orthogonal projections onto
the half-spaces H−i in a sequential and simultaneous way, respectively. This
is in general the characterization of the class of projection methods, which
are iterative procedures which use projections, of different types, onto sets by
taking into account that the projection onto the intersection of the sets is a
very hard computational task, while projections onto the individual sets are
relatively easier. This is the reason why these methods are applied success-
fully in many real-world applications and were called “Swiss Army knives”,
see [6]. Since the introduction of Kaczmarz [30] and Cimmino [17], the class
of projection methods was developed intensively and is capable of solving the
general convex feasibility problem (1.2) and it also include various algorithmic
structures such as sequential, simultaneous, block-iterative, string-averaging
and more, see [14] as well as [10, 11, 16, 22, 23]).

In the recent paper of Ordoñez et al. [35], two real-time projection meth-
ods (the Diagonally Relaxed Orthogonal Projections (DROP) [1] and the
Component-Averaged Row Projections (CARP) [25]) are introduced for solv-
ing huge, sparse and overestimated system of linear equations Ax = b where
A ∈ Rm×n with m ∼ 103 and n ∼ 109, arising in the area of proton computed
tomography (pCT). While iterative projection methods are applied success-
fully for solving big and sparse problems, see for example [36], in [35] it is
shown experimentally that the real-time DROP and CARP preform much
“better ”and “faster”.

So, following [35] and in general the filed of online algorithms [31, 21, 20],
our goal in this project is to introduce a new fixed point iteration of type
(1.3) or (1.4) designed for the CFPP or a projection method for the CFP.
We focus on the case where the entire input (operators/sets) is not available
from the beginning and given piece-by-piece, this calls for an online block-
iterative scheme for solving CFPPs and CFPs which is capable of operating
on segments of input and incorporate new input when it emerges. In the
CFPP, the idea is that the operators Ui for i ∈ I are provided in blocks
I = I1 ∪ I2 ∪ . . . ∪ IM , 1 ≤ M ≤ m and successively in time. We adopt the
Reich and Zalas [37] Modular String Averaging (MSA) procedure and show
how this can be used for the above scenarios. Numerical experiments show
the potential applicability and advantages of the proposed method to online
linear and non-linear feasibility problems.
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2 Preliminaries

Throughout this project H is a real Hilbert space with inner product 〈·, ·〉
and induced norm ‖ · ‖. We write xk ⇀ x and x and xk → x to indicate that
the sequence

{
xk
}∞
k=0

converges weakly and strongly to x, respectively.
We now recall some definitions and properties of several classes of opera-

tors. These and more can be found, for example in the excellent of Cegielski
[11].

Definition 2.1 Let U : H → H be some operator.

• The fixed point set of U , denoted by Fix(U) is defined as

Fix(U) := {x ∈ H | U(x) = x}. (2.1)

• The operator U is called cutter if for all x ∈ H and all z ∈ Fix(U),

〈z − U(x), x− U(x)〉 ≤ 0. (2.2)

The set of fixed points of a cutter U is closed and convex set and more-
over, Fix(U) =

⋂
x∈HH(x, U(x)), where H(x, U(x)) := {z ∈ H |

〈z − U(x), x − U(x)〉 ≤ 0}; see [4, Proposition 2.6(ii)] and Figure 3
for the geometric interpretation of a cutter.

Figure 3: Geometric interpretation of a cutter U .

• The operator U is called non-expansive (NE) if for all x, y ∈ H,

‖U(x)− U(y)‖ ≤ ‖x− y‖. (2.3)
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• The operator U is called firmly non-expansive (FNE) [18], if for all
x, y ∈ H,

‖U(x)− U(y)‖2 ≤ ‖x− y‖2 − ‖(U(x)− x)− (U(y)− y)‖2. (2.4)

An FNE operator is a cutter [11, Theorem 2.2.5].

• The operator U is called quasi-nonexpansive (QNE), if for all (x, q) ∈
H × Fix(U),

‖U(x)− q‖ ≤ ‖x− q‖. (2.5)

• The operator U with Fix(U) 6= ∅ is called ρ-demi-contractive (see
for example [19]), where ρ ∈ [−1, 0), if for all (x, z) ∈ H × Fix(U)

‖U(x)− z‖2 ≤ ‖x− z‖2 − ρ‖U(x)− x‖2 (2.6)

• The operator U is called ρ-strongly quasi-nonexpansive, where
ρ ≥ 0, if for all (x, z) ∈ H × Fix(U).

‖U(x)− z‖2 ≤ ‖x− z‖2 − ρ‖U(x)− x‖2 (2.7)

If ρ > 0, then U is called strongly quasi-nonexpansive.

• For α ∈ [0,∞], the operator Uα := Id + α(U − Id) is called an α-
relaxation of U , α is called a relaxation parameter. It is easy
to see that for every α 6= 0,

Fix(U) = Fix(Uα). (2.8)

• The operator U is called averaged [2] (also [9]) if there exists a non-
expansive operator N : H → H and a number c ∈ (0, 1) such that

U = (1− c)Id+ cN (2.9)

where Id is the identity operator on H.

• A quasi-nonexpansive operator U is called demi-closed at a point y ∈
H, if for any sequence

{
xk
}∞
k=0
⊂ H we have

xk ⇀ x
U(xk)→ y

}
=⇒ U(x) = y. (2.10)
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• A quasi-nonexpansive operator U is called approximately shrinking

if for any bounded sequence {xk}∞k=0 ⊆ H, we have

lim
k→∞
‖U(xk)− xk‖ = 0 =⇒ lim

k→∞
dist(xk,Fix(U)) = 0 (2.11)

For more details regarding this class of operators see for example [12].

A useful result showing the relation between two classes of operators from
above and is relevant to our analysis is the following theorem. The proof can
be found for example in [11, Theorem 2.1.39] and presented here for the
convenient of the reader.

Theorem 2.2 Let U : H → H be an operator having a fixed point and let
α ∈ (0, 2]. Then U is a cutter if and only if its Uα is (2 − α)/α-strongly
quasi-nonexpansive.

Proof. From the definition of α-strongly quasi-nonexpansive, we get for
all (x, z) ∈ H × Fix(U), that

‖Uα(x)− z‖2 ≤ ‖x− z‖2 − α‖Uα(x)− x‖2. (2.12)

Now, with α is (2− α)/α

‖Uα(x)− z‖2 ≤ ‖x− z‖2 − (2− α)

α
‖Uα(x)− x‖2. (2.13)

Since Uα(x)− x = α(U(x)− x), the inner product properties yield

‖Uα(x)− z‖2 − ‖x− z‖2 +
(2− α)

α
‖Uα(x)− x‖2

= ‖x− z + α(U(x)− x)‖2 − ‖x− z‖2 + α(2− α)‖U(x)− x‖2

= 2α(‖U(x)− x‖2 − 〈z − x, U(x)− x〉)
= 2α〈z − U(x), x− U(x)〉) (2.14)

for all (x, z) ∈ H × Fix(U). And the desired result is obtained.
The next principle is known as the Demiclosedness Principle [8].

Demiclosedness Principle. Let H be a real Hilbert space, C ⊆ H a
closed and convex set, and let S : C → H be a non-expansive mapping; then
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Id− S is demi-closed at y ∈ H.

Another useful result needed for our analysis is presented next, introduced
in [13, Proposition 4.1].

Proposition 2.3 Let U : H → H be a quasi-nonexpansive operator. Then
the following assertions hold:

1. If U is approximately shrinking, then U − Id is demi-closed at 0;

2. If dim(H) <∞ (H is finite dimensional) and U − Id is demi-closed at
0, then U is approximately shrinking.

Definition 2.4 Let Ci ⊆ H, for i ∈ I, be closed and convex sets with a
nonempty intersection C := ∩i∈ICi 6= ∅. We say that the family of sets C :=
{Ci | i ∈ I} is boundedly regular if for any bounded sequence {xk}∞k=0 ⊆
H, we have

lim
k→∞

max
i∈I

dist(xk, Ci) = 0 =⇒ lim
k→∞

dist(xk, C) = 0. (2.15)

The next proposition, taken from [3, Proposition 5.4 (iii), Corollary 5.14,
Corollary 5.22], present conditions which guarantee that a family of sets is
boundedly regular.

Proposition 2.5 Let Ci ⊆ H, for i ∈ I, be closed and convex sets with a
nonempty intersection C := ∩mi=1Ci. If one of the following conditions hold:

1. dim(H) <∞;

2. int (C) 6= ∅;

3. Each Ci is a half-space.

Then the family of sets C := {Ci | i ∈ I} is boundedly regular.

Now it is time to recall the metric projection onto a closed and convex
set. Let C ⊂ H. For each point x ∈ H, there exists a unique nearest point
in C, denoted by PC(x) and such that

‖x− PC (x)‖ ≤ ‖x− y‖ for all y ∈ C. (2.16)
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The mapping PC : H → C is called the metric projection of H onto C and it
is a non-expansive mapping of H onto C (actually FNE (hence a cutter) see
[11, Theorem 2.2.21]). PC is characterized [24, Section 3] by the following
two properties:

PC(x) ∈ C (2.17)

(hence Fix(PC) = C) and

〈x− PC (x) , PC (x)− y〉 ≥ 0 for all x ∈ H, y ∈ C, (2.18)

and if C is a hyper-plane, then (2.18) becomes an equality. It follows that

‖x− y‖2 ≥ ‖x− PC (x)‖2 + ‖y − PC (x)‖2 for all x ∈ H, y ∈ C. (2.19)

Another important type of projection is the next subgradient projection,
which is also a cutter. This projection is very useful when the convex set C
has a sub-level set representation of a convex function g : H → R, that is
C := {x ∈ H | g(x) ≤ 0}.

Example 2.6 Let f : H → R be a convex and continuous function with
a nonempty sub-level set S(f, 0) := {x | f(x) ≤ 0}. Denote by ∂f(x)
its subdifferential, that is, ∂f(x) := {g ∈ H | f(y) − f(x) ≥ 〈g, y −
x〉 for all y ∈ H}. By the continuity of f , the set ∂f(x) 6= ∅ for all x ∈
H (see [5, Proposition 16.3 and Proposition 16.14]). For each x ∈ H,
let gf (x) ∈ ∂f(x) be a given subgradient. The so-called subgradient

projection relative to f is the operator Pf : H → H defined by

Pf (x) :=

{
x− f(x)

‖gf (x)‖2
gf (x) if gf (x) 6= 0,

x otherwise.
(2.20)

One can verify that Fix(Pf ) = S(f, 0), see for example [11, Lemma 4.2.5],
and that Pf is a cutter, see [11, Corollary 4.2.6].

Several “simple”sets in which the orthogonal projection onto them has a
closed formula, are presented next.

Example 2.7 1. Let a ∈ Rn (non-zero) and β ∈ R. The projection onto
half-space H− = {z ∈ Rn | 〈a, z〉 ≤ β} is given as following.

PH−(x) =

{
x if 〈a, x〉 ≤ β

x− 〈x,a〉−β‖a‖2 a if 〈a, x〉 > β.
(2.21)

In case we have equality in H−, that is H = {z ∈ Rn | 〈a, z〉 = β},
then the set is called hyper-plane,
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2. Consider the non-negative orthant Rn
+, the projection onto it is de-

fined as: [
PRn+(x)

]
i

=

{
xi if xi ≥ 0
0 else.

(2.22)

3. Consider the closed ball B(z, r) := {x ∈ Rn | ‖x − z‖ ≤ r}, where
z ∈ Rn and r > 0. The projection onto the ball is defined as:

PB(z,r)(x) =

{
x if ‖x− z‖ ≤ r
z + r

‖x−z‖(x− z) if ‖x− z‖ > r.
(2.23)

Now that we have defined different types of projections as well as classes
of operators, we wish to recall two special types of projection methods: se-
quential (Kaczmarz, also known as Successive Orthogonal Projections (SOP)
[27], Projections Onto Convex Sets (POCS) [3] and Algebraic Reconstruction
Technique (ART) [26] for the linear case) and block-type iterative methods
(fully simultaneous if there is only one block, in the linear case it reduces to
Cimmino method [17]). For this purpose, we are focus on the convex fea-
sibility problem with non-empty, closed and convex sets Ci ⊆ H for i ∈ I.
The next definitions of control sequences, {i(ν)}∞ν=0, determine the ordering
in which the orthogonal-projections onto the sets Ci, i ∈ I are involved and
hence determine the structure of the algorithm.

Definition 2.8 1. The sequence {i(ν)}∞ν=0 is called cyclic control, if
i(ν) = (ν mod)m+ 1, where m is the number of the sets in (1.2).

2. The sequence {i(ν)}∞ν=0 is called almost cyclic control on I =
{1, 2, · · · ,m} if i(ν) ∈ I, for all ν ≥ 0, and there exists an integer
Q ≥ m (called the almost cyclically constant) such that

I ⊆ {i(ν + 1), i(ν + 2), · · · , i(ν +Q)} for all ν ≥ 0. (2.24)

3. The sequence {i(ν)}∞ν=0 is called remotest set control if is obtained
by determining i(ν) such that

dist(xν , Ci(ν)) = max{dist(xν , Ci) | i ∈ I}. (2.25)

4. The sequence {i(ν)}∞ν=0 is called random control if i(ν) ∈ I is chosen
randomly and independently determined according to a fixed probability
distribution {pi}

Now we present the sequential and simultaneous projection methods for
solving CFPs.
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Algorithm 2.9 SOP method
Initialization: Let x0 ∈ H be arbitrary starting point.
Iterative step: Given the current iterate xk, compute the next iterate

by

xk+1 = xk + λk

(
PCi(ν)(x

k)− xk
)

(2.26)

where PCi(ν) stands for the orthogonal projection onto the set Ci(ν), λk ∈
[ε1, 2 − ε2] for all k ≥ 0 and ε1, ε2 > 0. The control sequence {i(ν)}∞ν=0 is
cyclic on I.

Now for the next algorithm we need to define the following terms. A
vector ω = (ω(i))i∈I is called weight vector when ω(i) ≥ 0 for all i ∈ I
and

∑
i∈I ω(i) = 1. Given a weight vector ω, we can define the convex

combination Pω(x) :=
∑

i∈I ω(i)PCi . A sequence of weight vectors {ωk}∞k=0

is called fair if for any i ∈ I there exist infinitely many values of k for which
ωk(i) > 0.

Algorithm 2.10 Block-type method
Initialization: Let x0 ∈ H be arbitrary starting point.
Iterative step: Given the current iterate xk, compute the next iterate

by
xk+1 = xk + λk

(
Pωk(x

k)− xk
)

(2.27)

where {ωk}∞k=0 is a fair sequence of weight vectors and λk ∈ [ε1, 2 − ε2] for
all k ≥ 0 and ε1, ε2 > 0.

For the illustration of several types of projection methods for solving the
convex feasibility problem, we restrict ourself to the linear feasibility problem,
which is the system of linear equations Ax = b, where A ∈ Rm×n, x ∈ Rn and
b ∈ Rm. Denoting by Ai and bi the i-th row and entry of A and b, respectively,
and define the i-th hyper-plane Hi = {z ∈ Rn | 〈Ai, z〉 = bi}. Illustrations
of these and other projection methods is given in Figure 4, reproduced from
[15].
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Figure 4: Different projection methods for the linear case. The figure is
reproduced from [15]

Remark 2.11 Observe that the fixed point iterations (1.3) and (1.4) include
the above methods. For example, if we consider the common fixed point prob-
lem with Ui = PCi, then we obtain the convex feasibility problem. Moreover,
if Tk = Ui(k), where i(k) = (kmod)m+1 we obtain the SOP method (2.9) and
if we consider only one block I of size m, then by taking T = 1

m

∑m
i=1 Ui we

obtain Cimmino method for the linear case and block-type method in general.

Next we recall two fixed point theorems, the classical Opial Theorem [34]
and its generalization [11, Section 3.6].

Theorem 2.12 Let H be a real Hilbert space and let C ⊂ H be closed and
convex set. If T : C → C is an averaged operator with Fix(T ) 6= ∅ then, for
any x0 ∈ C, the sequence

{
xk
}∞
k=0

, generated by xk+1 = T (xk), converges
weakly to a point x∗ ∈ Fix(T ).

Next is the generalized Opial’s theorem, see for example [11, Section 3.6],
which is designed to handel a family of operators {Tk : H → H}∞k=1.
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Theorem 2.13 Let C ⊆ H be nonempty, closed and convex set, S : C → H
be an operator with a fixed point set and such that S − Id is demi-closed at
0. Let {Tk : H → H}∞k=1 be an asymptotically regular sequence of quasi-
nonexpansive operators such that Fix(S) ⊆ (∩∞k=1 Fix(Tk)). Let the sequence{
xk
}∞
k=0

, generated by xk+1 = Tk(x
k), with an arbitrary x0 ∈ H.

1. If the sequence of operators {Tk}∞k=1 has the property

lim
k→∞
‖Tk(xk)− xk‖ = 0 =⇒ lim

k→∞
‖S(xk)− xk‖ = 0, (2.28)

then
{
xk
}∞
k=0

converges weakly to a point Fix(S).

2. If H is finite dimensional and the sequence of operators {Tk}∞k=1 has
the property

lim
k→∞
‖Tk(xk)− xk‖ = 0 =⇒ lim

k→∞
inf ‖S(xk)− xk‖ = 0, (2.29)

then
{
xk
}∞
k=0

converges to a point Fix(S).
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3 The Algorithm

In this chapter we focus on the common fixed point problem (CFPP) (1.1)
with the family of demi-contractive operators {Ui}i∈I , such that ∩i∈I Fix (Ui) 6=
∅. The situation is then that the indices set I is decomposed into M blocks
I = I1 ∪ · · · ∪ IM by choosing {mt}Mt=0 ⊂ Z, (Z is the integer set)such that
0 = m0 < m1 < . . . < mM = m and for each 1 ≤ t ≤ M , the subset
It := {mt−1 + 1,mt−1 + 2, · · · ,mt}. This of course divides the family of oper-
ators {Ui}i∈I into corresponding groups of operators. Since our concern is to
introduce an online block-iterative scheme, we focus on the case where the
blocks, and the corresponding operators, are not given from the beginning,
but provided in time, in a serial way. In the recent paper of Ordoñez et al.
[35], two real-time projection methods ((DROP) [1] and (CARP) [25]) for
solving systems of linear equation Ax = b where A ∈ Rm×n with m ∼ 103

and n ∼ 109, arising in the area of proton computed tomography (pCT). Re-
cently, Reich and Zalas [37] introduced the Modular String Averaging (MSA)
procedure for solving the common fixed point problem in real Hilbert spaces.
Their scheme is very flexible and allows to construct intermediate operators
Tk, called modules, which can be involved in a inner loop of a wider algo-
rithm with a finite number of iterations Nk. Our observation is that this can
procedure can be adopted for our needs along with convergence proof, which
[35] is missing.

For the algorithm’s representation we list several structures of the oper-
ators Tk, constructed by the family of operators {Ui}i∈I with respect to the
M blocks I = I1 ∪ · · · ∪ IM , and are involved in an intermediate loop of our
algorithm. This structures are presented as special cases for [37, Modular
String Averaging], for more details as well as intensive historical review see
[37] and the many references therein.

Definition 3.1

1. Cyclic (with relaxation): αk ∈ [ε, 2 − ε], for ε > 0: Tk = Ui(k),
where i(k) = (kmodm) + 1;

2. Convex combination: For a weight vector ωk(i) ≥ 0 for all i ∈ Ik
and

∑
i∈Ik ω

k(i) = 1, let Tk =
∑

i∈Ik ω
k(i)Ui;

3. Composition: Tk =
∏

i∈Ik Ui.

4. Blocks: αk ∈ [ε, 2− ε], for ε > 0: Tk = Id+ αk
(∑

i∈Ik ω
k(i)Ui − Id

)
;
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5. Greedy (remotest-set): Tk := Uik , where ik = argmaxi∈Ik dist(·,Fix(Ui));

More special structures that can be used are string averaging as well as
various types of Douglas-Rachford operators (see for example [7]) in case that
2UiId are used instead of Ui.

Algorithm 3.2 Online block-iterative scheme
Initialization: Let x0 ∈ H be arbitrary starting point, define N0 ∈ N

(number of iterations) and given the first block I1 and its corresponding subset
of operators {Ui}i∈I1. Compute x1 via

x1 = T0(x
0) (3.1)

where the operator T0 can be constructed according to Definition 3.1, that is
cyclic, simultaneous or composition of {Ui}i∈I1.

Iterative step: Given the current iterate xk, define Nk ∈ N (number of
iterations) compute the next iterate by

xk+1 = Tk(x
k) (3.2)

where the operator Tk can be constructed as follows.

1. If k < m: the blocks I1, I2, . . . , Ik are given and hence the operators
{Ui}i∈I1∪···∪Ik . Then Tk can be constructed with respect to each, some or
all the operators {Ui}i∈I1∪···∪Ik , in a cyclic, simultaneous or composition
way, based on Definition 3.1.

2. If k ≥ m: then all the blocks are given and hence also the operators
{Ui}i∈I and then Tk can be constructed based on Definition 3.1, with
respect to the all family of operators {Ui}i∈I .
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3.1 Convergence

For the convergence of our Algorithm 3.2 we assume that the following con-
ditions hold.

Condition 3.3 The operators Ui for all i ∈ I are demi-contractive with
Fix(Ui) 6= ∅ and such that Ui, α (α-relaxation of Ui) is (2 − α)/α-strongly
quasi-nonexpansive.

Condition 3.4 I ⊆ Ik ∪ Ik+1 ∪ · · · ∪ Ik+s−1 for each k = 0, 1 . . . and some
s ≥ m− 1.

Condition 3.5 The sequence {Nk}∞k=0, which is the number of iterations per
each block, is bounded.

Reich and Zalas [37] proposed in Numerical Algorithm the Modular String
Averaging (MSA) procedure for solving the common fixed point problem in
real Hilbert spaces. They introduced a flexible procedure [37, Procedure
1.1]) for constructing intermediate operators Tk, called modules, which can
be involved in a inner loop of a wider algorithm with a finite number of
iterations Nk, with a family of operators {Ui}i∈I . Due to the modularity of
their scheme, and by assuming Conditions 3.3-3.5, the convergence of our
online block-iterative scheme, Algorithm 3.2, follows directly from the proof
of Theorem 4.1 of Reich and Zalas [37], although there the online term is not
mentioned. The next theorem is a modification of [37, Theorem 4.1] adjusted
to Algorithm 3.2.

Theorem 3.6 Let H be a real Hilbert space and given operators Ui : H → H
for i ∈ I, such that Fix (Ui) 6= ∅. Assume that Conditions 3.3-3.5 hold and
let the sequence

{
xk
}∞
k=0

be generated by Algorithm 3.2.

1. If for each i ∈ I, the operator Ui satisfies Opials demi-closedness prin-
ciple, then the sequence {xk}∞k=0 converges weakly to some point in
C = ∩mi=1 Fix (Ui).

2. If for each i ∈ I, the operator Ui is approximately shrinking and the
family C := {Fix(Ui) | i ∈ I} is boundedly regular, then the sequence
{xk}∞k=0 converges strongly to some point in C.
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It worth mentioning that in this project we assume that Ui for all i ∈ I
are demi-contractive and hence by Theorem 2.2, for all i ∈ I and α ∈ (0, 2]
we define Ui, α (α-relaxation of Ui) such that it is (2− α)/α-strongly quasi-
nonexpansive and thus a cutter, and this is what is used in Algorithm 3.2.

Remark 3.7 1. Following Condition 3.3 and Theorem 2.2 we get that Ui
are cutters and also the structure of Algorithm 3.2 can arbitrary and of
any type based on Definition 3.1.

2. Condition 3.4 means that the control sequence is almost cyclic (Defini-
tion 2.8 (ii)).

3. Condition 3.5 means that the number of iterations Nk is bounded, which
means that any finite number of intermediate steps within each blocks
is valid.

4. In case that Ui = PCi and H = Rn, then all continuity related assump-
tions such as cutter, demi-closed, approximately shrinking are satisfied.

5. The random control sequence for feasibility problems and in particular
for linear feasibility problems (known as randomized Kaczmarz method,
see e.g., [33, 32]) appeared to be an efficient control sequence. Although
the convergence proof does not cover this situation, it is interesting
to investigate its theoretical behaviour, and hence we plan to define it
as for our future work. Despite this, we included it in our numerical
experiments. Another related result in which random control sequences
are also considered is the class of stochastic algorithms, in particular for
feasibility problems and variational inequalities, see the work of Iusem
et. al. [29].

6. Ordoñez et al. [35] presented two real-time projection methods (DROP)
[1] and (CARP) [25] for solving huge, sparse and overestimated system
of linear equations Ax = b where A ∈ Rm×n with m ∼ 103 and n ∼ 109,
arising in the area of proton computed tomography (pCT). Their paper
reports very promising experimental behavior but unfortunately is miss-
ing the mathematical theory. Although our approach does not covers
their schemes, we provide are able to provide an analysis for a flexible
scheme which can be applied not only to linear feasibility problems.
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4 Numerical experiments

In this chapter we compare 4 variants of our on line scheme: Cimmino [17]
(Algorithm 2.9), Kaczmarz [30] (Algorithm 2.10), Randomized Kaczmarz
([33, 32]) and Greedy-Kaczmarz for linear and non-linear (quadratic) CFPs
in Euclidean spaces Rd. All the numerical results are completed on a standard
Lenovo laptop with Intel(R) Core(TM) i5-4200MQ CPU 1.6GHz with 8 GB
memory. The programme is implemented in MATLAB 2017b.

Example 4.1 Linear CFP: In this example consider solving a system of
linear equations Ax = b, in particular, the reconstruction of a test image
x ∈ [0, 1]n (Lenna ) from a limited number of tomographic projections. Each
pixel is denoted by xi ∈ [0, 1] and each entry in b ∈ Rm, called tomographic
measurement or single projection, corresponds to the integrated gray values
of x along the single ray. Each matrix entry aij ≥ 0 corresponds to the length
of the intersection of the i-th ray with the j-th pixel. If ray i and pixel j do
not intersect then aij = 0, see Figure 5. Stacking all equations for all the
rays together leads to the linear equations Ax = b, and the measurements
are described such that A = (ATθ1 ATθ2 . . . ATθnA)

T and each block matrix Aθi
corresponds to a different projecting angle.

Figure 5: Parallel beam geometry set-up: a set of parallel rays is shot through
the object from different directions. These are typically coined as one projec-
tion. Two projections are illustrated above. Illustration of a single projection
corresponding to a measurement along one ray. A single projection corre-
sponds to the line integral over a piecewise constant function.
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In our experiments we use the MATLAB routine paralleltomo.m from
the AIR Tools package [28] that implements such a tomographic matrix for
a given vector of angles. The Lenna grey-scaled image size is N = 128 (this
means 128 × 128 pixels) and we choose the number of parallel beams to be
nA = 100 for each angle, another parameter is p = round(

√
2 ∗ 128) = 169.

So, with this choices of parameters, we get the over-determined matrix A of
size (nA ∗ p)× (N2) = 18100× 16384. In this case, the data is the rows of A
and the corresponding entries of b. We then divide the system Ax = b into
10 sub-systems Ajx = bj, of size 1810×16384 for j = 1, · · · , 10. The time of
arrival for each block is fixed and set to be 1 minute. The stopping criterion
for all the algorithms is ‖xk+1 − xk‖ ≤ 10−3 and the initial starting point is
x0 = 0.

In all algorithms, besides Cimmino’s method, we choose the relaxation
parameters λk ≡ 1 and in Cimmino’s method λk ≡ 1.9. In Figure 6 we
present the original Lenna image used for our recovery. In Figure 7, a run-
time (in seconds) comparison between the online-block Cimmino method and
the regular Cimmino method over the all data is presented. Later in Figures
8–11 we present the graphs comparing the run-times as well as the recovered
images corresponding to the online-block algorithms and their regular variant
operating on the all data, starting when it arrives. The term Error in the
graphs denotes ‖Axk − b‖2. It can be seen in all experiments that while the
difference in the recovered image is barely noticed to a naked eye, the graphs
show that it is always better to apply the online-block version to obtain the
needed approximation, sometimes even before the all data is available.
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Figure 6: Original image (Lenna ).
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Figure 7: Cimmino method with 10 sweeps and 10 blocks.
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Figure 8: Comparison of Kaczmarz method
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Figure 9: Comparison of randomized Kaczmarz method
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Figure 10: Comparison of greedy method

Example 4.2 Quadratic CFP: Here we generate 10 quadratic feasibility
problems in R1000, meaning that each set is a ball. In each experiments we
increase the number of the sets and compare the performances of all the
online-block algorithms and their regular variants waiting for the data to
arrive. Each ball is created by picking a center ci ∈ R1000 with coordinates
randomly uniformly generated in the range [−5, 5]. Then a radius ri :=
‖ci‖+ αi was defined by adding to the center’s distance from the origin ‖ci‖
a random number uniformly picked from the range [0, 0.1] guaranteeing that
the ball includes the origin, thus, yielding a consistent CFP. Initialization
vectors x0 were generated by randomly picking their coordinates from the
range [−10, 10]. The number of constraints (balls) varied from 200 to 20000.
As in Example 4.1, for each CFP, we divide the number of constraints (balls)
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into 10 blocks and determine the stopping rule: ‖xk+1−xk‖ ≤ ε = 10−7. The
relaxation parameters λk is equal to 1 and in Cimmino method it was 1.9.
In these experiments we see that as the number of constraints increases there
is a big difference between the performances of the online-block schemes and
their regular variants. Again this emphasize the potential applicability of
these methods to online problems.
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Figure 11: Run-times in seconds over 10 sweeps and 10 blocks accordingly,
for Cimmino, cyclic (Kaczmarz type) and random methods.
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5 Conclusions

This present project concerns with the Common Fixed Point Problem (CFPP)
and the Convex Feasibility Problem (CFP) in real Hilbert spaces. We exam-
ine the situation in which the entire input, operators/sets is not available
from the beginning, but provided piece-by-piece, in a sequential way.

Our motivating is the work of Ordoñez et al. [35] which presented two
real-time projection methods (DROP) [1] and (CARP) [25] for solving huge,
sparse and overestimated system of linear equations Ax = b where A ∈ Rm×n

with m ∼ 103 and n ∼ 109, arising in the area of proton computed tomog-
raphy (pCT). We present an online block-iterative scheme which is capable
of operating on any block of data (operators/sets), for any finite number
of iterations, before moving to the next block. The convergence proof of
our scheme is based on the recent result of Reich and Zalas [37], the Modu-
lar String Averaging (MSA) procedure. We provide numerical experiments
which show that this online block-iterative scheme produces solutions faster
compared to the case when all the data is given in advance. While Ordoñez
et al. [35] is focus on system of linear equations and no mathematical theory
is missing, we focus on a more general framework of common fixed point
problem with theoretical validity.

Although the structures of CARP and DROP does not included in the
algorithmic structure Tk in Algorithm 3.2, we plan to investigate in this
direction and moreover, obtain error bounds and convergence rates of this
new scheme.
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[19] Şt. Măruşter and C. Popirlan. On the mann-type iteration and the convex feasibility
problem. Journal of Computational and Applied Mathematics, 212:390–396, 2008.

[20] I. Das and F. A. Potra. Subsequent convergence of iterative methods with applications
to real-time model-predictive control. J. Optim. Theory Appl., 119:37–47, 2003.

[21] M. Diehl. Real-time optimization for large scale nonlinear processes. volume 920
of Fortschr.-Ber. VDI Reihe 8, Meß, Steuerungs-und Regelungstechnik. VDI Verlag,
Düsseldorf, 2002.

[22] R. Escalante and M. Raydan. Alternating Projection Methods. The Society for In-
dustrial and Applied Mathematics (SIAM), Philadelphia, PA, USA, 2011.

[23] A. Galántai. Projectors and Projection Methods. Kluwer Academic Publishers,
Boston, Dordrecht, London, 2004.

[24] K. Goebel and S. Reich. Uniform Convexity, Hyperbolic Geometry, and Nonexpansive
Mappings. Marcel Dekker, New York and Basel, 1984.

[25] D. Gordon and R. Gordon. Component-averaged row projections: A robust block-
parallel scheme for sparse linear systems. IAM Journal Scientific Computing, 27:1092–
1117, 2005.

[26] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (art)
for three-dimensional electron microscopy and x-ray photography. Bulletin of the
American Mathematical Society, 29:471–481, 1970.

[27] L. G. Gubin, B. T. Polyak, and E. V. Raik. The method of projections for finding
the common point of convex sets. U.S.S.R. Computational Mathematics and Mathe-
matical Physics, 7:1–24, 1967.

[28] P. C. Hansen and M Saxild-Hansen. AIR Tools – A MATLAB Package of Algebraic
Iterative Reconstruction Methods. J. Comput. Appl. Math., 236(8):2167–2178, 2012.
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