
ORT Braude College

Department of Mathematics

B.SC. final year project

First order gradient methods

Author:
Shira Bar-Dov

Supervisor:
Assoc. Prof. Aviv Gibali

July 19, 2019

Contents

1 Abstract 2

2 Introduction 3

3 Preliminaries 6

4 Data Fitting 8
4.1 ISTA . 9
4.2 FISTA . 12
4.3 Numerical experiments . 13

5 Classification 19
5.1 Pegasos . 21
5.2 Numerical experiments . 22

6 Conclusion 25

7 Acknowledgements 25

8 Matlab Codes 26
8.1 Data Fitting . 26
8.2 Classification . 29

1

1 Abstract

In this project we describe and analyze different kinds of iterative first order
gradient algorithms for solving optimization problems arising in image pro-
cessing and support vector machines.
This class of methods, which can be viewed as an extension of the classical
gradient algorithms, are attractive due to their simplicity and thus they ade-
quate for solving large-scale problems even with dense matrix data. However,
such methods are also known to converge quite slowly.
In this project we present several powerful iterative descent method for find-
ing a local minimum of a multivariable function, that have been proven to
converge faster than classical gradient algorithms.
Numerical experiments for image deblurring and classification problems are
given.

2

2 Introduction

In this project we are concerned with optimization models for data fitting
and data classification. Specifically, we focus on first order gradient de-
scent methods such as ISTA- Iterative Shrinkage Thresholding Algorithm
and FISTA- Fast Iterative Shrinkage Thresholding Algorithm for data fit-
ting and a stochastic method called Pegasos for data classification.
Gradient descent was invented by the french mathematician Louis Augustin
Cauchy in 1847. Since then, gradient descent methods kept developing, sub-
gradients methods and stochastic subgradient methods from convex opti-
mization were discovered during 1960-1970.
Gradient descent is a first-order iterative optimization algorithm for finding
the minimum of a function. It is a common optimization method in machine
learning algorithms, which are based on a convex function. Through an it-
erative process and the use of partial differential equations, gradient descent
constructs a set of parameters, in order to minimize a given cost function to
its local minimum.
Gradient descent is based on the observation that if the multivariable func-
tion F (x) is defined and differentiable in a neighborhood of a point x , then
F (x) decreases fastest if one goes from x in the direction of the negative
gradient of F at x ,−∇F (x). It follows that, if

xn+1 = xn − γ∇F (xn).

Figure 1: The iterates of the gradient method along with the contour lines
of the objective function

for γ ∈ R+ small enough, the term γ∇F (x) is subtracted from x because
we want to move against the gradient, toward the minimum.

3

The stepsize or the learning rate γ is a positive number that determines the
size of each step in the process. If it is too small, the process could be slow.
On the other hand, if it is too large the process can skip the minimum and
may not converge.
With this in mind, consider the unconstrained nonsmooth convex optimiza-
tion problem

min
x
{F (x) ≡ f(x) + g(x) : x ∈ Rn}, (1)

where f, g are convex function, with g possibly nonsmooth.
The gradient algorithm is one of the simplest methods for solving (1). It
generates a sequence {xk} via

x0 ∈ Rn, xk = xk−1 − tk(∇f(xk−1) +∇g(xk−1)),

where tk > 0 is a suitable stepsize.

This problem arises at many different applications among them signal and
image processing, optics, speech tagging and music identification.
When solving large-scale problems, first-order methods are often the only
practical option, but the sequence xk converges quite slowly to a solution.

In this project, we focus on two specific models, one for data fitting with
and without regulators, and one for classification.
Data fitting and classifying data are common tasks in machine learning. If a
parametrized model function meant to explain some phenomena is given, the
goal is to adjust the numerical values for the model so that it most closely
matches some data.

In data fitting problems, a classical approach to the familiar basic linear
problem (1) where

f(x) = Ax− b, g(x) = 0,

where A ∈ Rm×n, x ∈ Rn, b ∈ Rm, R(A) the column space of A.
is the least squares, which estimate the solution by minimize the data error.
In other words, if we define the error r = Ax − b then we find x = xls that
minimize ‖r‖. xls is called least-squares approximate solution of Ax = b.
Axls is point in R(A) closest to b, and the projection of b onto R(A).

4

Note that if b ∈ R(A) then xls solves Axls = b, or if A is square it is
invertible (nonsingular) so xls = A−1b.

In classification problems, data points are given, and each belong to one
of two or more classes. When a new point is given, the goal is to determine
in which class it will be. In support vector machines, each data point is a p di-
mensional vector, and the goal is to determine whether it could be separated
with a p− 1 dimensional hyperplane. Note that there are many hyperplanes
that might classify the data, but the best hyperplane is the one that rep-
resents the largest separation (margin) between the two classes. Hence, the
optimal hyperplane is the one that maximized the distance from it to the
nearest data point on each side.

5

3 Preliminaries

Convex function: A function f is convex if for every u, v in the domain,
and for every λ ∈ [0, 1] we have

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v).

In general, the necessary condition for x to be a minimum for the function
f is ∇f(x) = 0. For convex functions, this is both necessary and sufficient.

Geometrically, the inequality in the definition means the graph of f be-
tween u and v is below the segment which joins the points (u, f(u)) and
(v, f(v)).

l1 Norm: l1 Norm is the sum of the magnitudes of the vectors in a space.
A vector norm defined for a vector ~x = (x1, ..., xn) as ‖~x‖1 =

∑n
i=1 |xi|.

Dense matrix: A matrix in which most of the elements are nonzero.

Lipschitz continuous gradient: A function f that uphold

‖∇f(x)−∇f(y)‖ ≤ L(f)‖x− y‖ for every x, y ∈ Rn,

where ‖ · ‖ denotes the standard Euclidean norm and L(f) > 0 is the Lips-
chitz constant of ∇f .

Hyperplane: A hyperplane in an n dimensional Euclidean space, is a flat
n − 1 dimensional subset of that space that divides the space into two dis-
connected parts.

6

Inner product: The inner product of two vectors ~a = (a1, a2, ..., an) and
~b = (b1, b2, ..., bn) is defined as:

a · b = aT b =
n∑
i=1

aibi = a1b1 + a2b2 + ...+ anbn.

Gradient: The gradient of a scalar multivariable function f(x1, x2, ..., xn)
is denoted ∇f , packages all its partial derivative information into a vector:
∇f(~x) = (∂f

∂x1
, ∂f
∂x2
, ..., ∂f

∂xn
).

Smooth function: A smooth function is a function that has derivatives
of all orders everywhere in its domain.

7

4 Data Fitting

In this section we discuss first order methods of gradient descent iterative
algorithms, for solving linear inverse problems arising in image processing.
A basic linear inverse ”image deblurring” problem Ax = b

where A ∈ Rm×n represents a two-dimensional convolution blur operator,
and b ∈ Rm represents the blurred image, are known. x ∈ Rn is the ”true”
and unknown image to be estimated, its size is assumed to be the same as
that of b (n = m). Both x and b are formed by stacking the columns of their
corresponding two-dimensional images.
The blur operator or the Gaussian operator is a two-dimensional convolution
operator that is used to blur images and remove detail and noise. The idea of
Gaussian smoothing is to use this two-dimensional distribution as a ’point-
spread’ function, and this is achieved by convolution of a Gaussian mask h
and the true image x.

8

4.1 ISTA

The class of Iterative Shrinkage Thresholding Algorithms (ISTA) is an exten-
sion of the classical gradient algorithm. It is attractive due to its simplicity
and thus is adequate for solving large-scale problems even with dense matrix
data.

Adopting this same gradient idea to the problem formulation (1) where the
following assumptions are made:
g : Rn → R is a continuous convex function which is possibly nonsmooth.
f : Rn → R is a continuously differentiable with Lipschitz continuous gradi-
ent L(f).

Note that when g(x) ≡ 0, (1) is the general unconstrained smooth con-
vex minimization problem.
When f(x) = ‖Ax− b‖2, g(x) ≡ ‖x‖1 , (1) is the l1 regularization problem

min {f(x) + λ‖x‖1 : x ∈ Rn} .

To calculate the Lipschitz constant of the gradient ∇f we first write f as
follows:

f(x) = ‖Ax− b‖2 = (Ax− b)T (Ax− b) = xTATAx− xTAT b− bTAx+ bT b =

= xTATAx− (bTAx)T − bTAx+ bT b = xTATAx− 2bTAx+ bT b.

The last transaction is because the product bTAx is a scalar product of vector
b and Ax, and therefore (bTAx)T = bTAx.
The gradient of ∇f(x) :

∇f(x) = ∇(xTATAx−2bTAx+bT b) = (ATA+(ATA)T)x−2(bTA)T = 2ATAx−2AT b.

We define the Lipschitz continuous gradient at the preliminaries section,

‖∇f(x)−∇f(y)‖ = ‖2ATAx−2AT b−(2ATAy−2AT b)‖ = ‖2ATA(x−y)‖ ≤ 2‖ATA‖‖x−y‖.

The inequality is a result of the Cauchy Bunyakovsky Schwarz inequality,
therefore the Lipschitz constant of the gradient is 2‖ATA‖.

Theorem 1 Let A be a symmetric n × n matrix, ‖A‖ = maxj|λj| , where
λj are the eigenvalues of A.

9

Proof. The norm of a matrix is defined as

‖A‖ = max
‖u‖=1

‖Au‖.

Taking the singular value decomposition of the matrix A, we have

A = V DW T ,

where V and W are re orthonormal and D is a diagonal matrix. Since V and
W are orthonormal, we have ‖V ‖ = 1 and ‖W‖ = 1. Then ‖Av‖ = ‖Dv‖
for any vector v. Then we can maximize the norm of Av by maximizing the
norm of Dv. By the definition of singular value decomposition, D will have
the singular values of A on its main diagonal and will have zeros everywhere
else. Let λ1, ..., λn denote these diagonal entries so that

D =

λ1 0 · · · 0
0 λ2 · · · 0
...

. . .
...

0 0 · · · λn

 .

Taking some v = (v1, v2, · · · , vn)T , the product Dv takes the form

Dv =

λ1v1...
λnvn

 .

Maximizing the norm of this is the same as maximizing the norm squared.
Then we are trying to maximize the sum

S =
n∑
i=1

λ2i v
2
i ,

under the constraint that v is a unit vector (i.e.,
∑

i v
2
i = 1). The maximum

is attained by finding the largest λ2i and setting its corresponding vi to 1 and
then setting each other vj to 0. Then the maximum of S (which is the norm
squared) is the square of the absolutely largest eigenvalue of A. Taking the
square root, we get the absolutely largest eigenvalue of A.

10

ATA is a symmetric matrix, hence, the smallest Lipschitz constant of the
gradient ∇f is L(f) = 2‖ATA‖ = 2λmax(A

TA), where λmax is the maximal
eigenvalue of ATA.

One of the methods for solving (1) is in the class of ISTA. The ISTA method
which generates a sequence {xk} in this case would be:

x0 ∈ Rn, xk = xk−1 −
1

L
(∇f(xk−1) +∇g(xk−1)). (2)

The ISTA iteration (2) can be viewed as a proximal regularization of the
linearized function f at xk−1, and written equivalently as

xk = argmin
x
{f(xk−1) + 〈x− xk−1,∇f(xk−1)〉+

L

2
‖x− xk−1‖2 + g(x)}.

For any L > 0, consider the quadratic approximation of (1) at a given point
y:

QL(x, y) := f(y) + 〈x− y,∇f(y)〉+
L

2
‖x− y‖2 + g(x),

which admits a unique minimizer

pL(y) := argmin {QL(x, y) : x ∈ Rn} .

Simple Algebra shows that

QL(x, y) := f(y) + 〈x− y,∇f(y)〉+
L

2
〈x− y, x− y〉+ g(x) =

= g(x) +
L

2
〈x− y, 2

L
∇f(y)〉+

L

2
〈x− y, x− y〉+ f(y) =

= g(x) +
L

2

(
〈x− y, x− y〉+ 2〈x− y, 1

L
∇f(y)〉

)
+ f(y) =

= g(x)+
L

2

(
〈x− y +

1

L
∇f(y), x− y +

1

L
∇f(y)〉 − 〈 1

L
∇f(y),

1

L
∇f(y)〉

)
+f(y) =

= g(x) +
L

2

∥∥∥∥x− y +
1

L
∇f(y)

∥∥∥∥2 − 1

2L
‖∇f(y)‖+ f(y).

11

ignoring constant terms in y

pL(y) = argmin
x

{
g(x) +

L

2

∥∥∥∥x− (y − 1

L
∇f(y)

)∥∥∥∥2
}
.

Then, the gradient algorithm ISTA generates a sequence {xk} via

x0 ∈ Rn, xk = pL(xk−1),

where L > 0 plays the role of a stepsize.

To conclude, the basic iteration of ISTA for solving problem (1) with con-
stant stepsize is:

Input: L := L(f)- A Lipschitz constant of ∇f .
Initialize: Take x0 ∈ Rn

Step k: For each k ≥ 1 compute

xk = pL(xk−1).

4.2 FISTA

A Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is an improve-
ment of the ISTA method for solving the general problem (1). While FISTA
keeps the simplicity of ISTA, the sequence xk that FISTA generates converges
more quickly to a solution than other gradient methods.
The main difference between the ISTA method and the FISTA method is that
the iterative shrinkage operator pL() is not employed on the previous point
xk−1, but rather at the point yk, which uses a very specific linear combination
of the previous two points xk1, xk2. Obviously, the main computational effort
in both ISTA and FISTA remains the same, because the requested additional
computation for FISTA in the steps (4) and (5) is clearly marginal.

The basic iteration of FISTA for solving problem (1) with constant step-
size is:

12

Input: L := L(f)- A Lipschitz constant of ∇f .
Initialize: Take y1 = x0 ∈ Rn, t1 = 1
Step k: For each k ≥ 1 compute

xk = pL(xk−1) (3)

tk+1 =
1 +

√
1 + 4t2k
2

(4)

yk+1 = xk +

(
tk − 1

tk+1

)
. (5)

4.3 Numerical experiments

In this section we illustrate an image deblurring problem. We estimate an
image x from blurred image b using the iterative gradient descent algorithms
ISTA and FISTA. We compare ISTA to FISTA and show the difference be-
tween the performance of those methods.
Both methods were used with a constant stepsize rule and applied once when

f(x) = ‖Ax− b‖2, g(x) = 0, (6)

and once with the l1 regulator when

f(x) = ‖Ax− b‖2, g(x) = λ‖x‖1. (7)

Figure 2: Deblurring of the cameraman

13

In this example we look at the 250× 250 cameraman image. The image
went through a Gaussian blur of size 9×9 and standard deviation 4 (applied
by the MATLAB functions conv2 and fspecial). The original and blurred
images are given in Figure (2).
We tested ISTA and FISTA for solving problems (6) and (7), where b rep-
resents the vectorized blurred image, A represents the blur operator, which
is a two-dimensional convolution operator, and x represent the unknown
true image. The regularization parameter has been chosen to be λ = 1.
The Lipschitz constant was computable in this example, since the maximum
eigenvalue of ATA can be calculated.
Iterations 5, 50, 100 and 200 of ISTA algorithm are described in Figure (3).
Iterations 5, 50, 100 and 200 of FISTA algorithm are described in Figure (4).

The peak signal to noise ratio (PSNR) for the reconstructed image is cal-
culated, with the true image as the reference. This ratio denotes how close
are we to the true image, where higher values would denote that the image
is closer to the true image.
The function value that we want to minimize is given at those iterations, in
order to track its value as it gets lower with the iterations.

ISTA’s iterations:

14

Figure 3: Iterations of ISTA for deblurring of the cameraman.

15

FISTA’s iterations:

16

Figure 4: Iterations of FISTA for deblurring of the cameraman.

The data is summarized in the following tables:

Function value of f(x) + g(x) = ‖Ax− b‖
5 iterations 50 iterations 100 iterations 200 iterations

ISTA 3.453e+05 2.662e+04 1.292e+04 5.535e+03
FISTA 2.033e+05 2.282e+03 4.887e+02 9.660e+01

Function value of f(x) + g(x) = ‖Ax− b‖+ ‖x‖1
5 iterations 50 iterations 100 iterations 200 iterations

ISTA 5.079e+06 4.766e+06 4.752e+06 4.745e+06
FISTA 4.940e+06 4.742e+06 4.740e+06 4.739e+06

It is clear that FISTA gives better results than ISTA, because the function
values of FISTA are consistently lower than the function values of ISTA.
Note that the function value of FISTA after only 50 iterations is better than
the function value of ISTA after 200 iterations.

PSNR: peak signal to noise ratio for f(x) + g(x) = ‖Ax− b‖
5 iterations 50 iterations 100 iterations 200 iterations

ISTA 2.172+01 2.367+01 2.446+01 2.533+01
FISTA 2.201+01 2.618+01 2.786+01 2.993+01

PSNR: peak signal to noise ratio for f(x) + g(x) = ‖Ax− b‖+ ‖x‖1
5 iterations 50 iterations 100 iterations 200 iterations

ISTA 2.171+01 2.368+01 2.448+01 2.535+01
FISTA 2.200+01 2.628+01 2.810+01 3.025+01

17

Here too, it is clear that FISTA gives better results than ISTA, because
the PSNR of the FISTA method compared with the original image is consis-
tently higher than the PSNR of the ISTA method compared with the original
image.
Note that the PSNR of function f(x)+g(x) = ‖Ax−b‖+‖x‖1 is consistently
higher than the PSNR of function f(x) + g(x) = ‖Ax − b‖, so we can say
that the l1 regulator helps the iterations to converge faster.

18

5 Classification

In this section we discuss Stochastic Sub-Gradient Descent algorithms (SGD)
for solving the optimization problem cast by Support Vector Machines.
SGD is a modification of the basic gradient descent algorithm, which allows
us scaling these algorithms to much bigger training sets.
The problem with gradient descent is that if the number of the training ex-
amples is much bigger, computing the gradient could be very expensive or
even impossible because each step requires storing all the data, and calcu-
lates the derivative. SGD doesn’t need to look at all of the training set in
every single iteration, but only at a single training example.
Support vector machine is a linear model for classification and regression
problems that constructs a hyperplane that separates the data into classes.
First, it randomly reorders the data examples, a pre-processing step which
ensures that when scanning through the training set, the order of visiting
the training examples would be in randomly sorted order, that speeds up the
convergence.
Then it finds the points closest to the hyperplane from both the classes.
These points are called support vectors. Then, the distance between the
hyperplane and the support vectors is computed. This distance is called the
margin. The goal is to maximize the margin, so the hyperplane for which
the margin is maximized is the optimal hyperplane.
The main difference between gradient descent and SGC is that in SGC the
algorithm modifies the parameters a little bit for every iteration on one train-
ing example to fit just the specific training example a little bit better.

Formally, given a training set S = {(~xi, yi)}mi=1 where ~xi ∈ Rn and yi ∈
{+1, 1}, we would like to find the minimizer of the problem

min
~w

λ

2
‖~w‖2 +

1

m

∑
(~x,y)∈S

l(~w; (~x, y)), (8)

where
l(~w; (~x, y)) = max{0, 1− y〈~w, ~x〉}, (9)

〈u, v〉 denotes the standard inner product between the vectors u and v, λ is
the regularization parameter of SVM, and l is called the Loss function.

19

We denote that

f(w) =
λ

2
‖~w‖2 +

1

m

∑
(~x,y)∈S

l(~w; (~x, y)),

hence, the gradient decent iterative algorithm in this case would be:

wt+1 = wt − ηt∇f(wt),

where ηt > 0 is called the learning rate. The gradient ∇f would be:

∇f(w) = λ‖w‖+
∂

∂w
max{0, 1− y ~w · ~x},

where the sub gradient is

∂

∂w
=

−yixi, yi ~w · ~xi < 1,

0, yi ~w · ~xi = 1,

0, yi ~w · ~xi > 1,

(10)

if yi ~w · ~xi < 1 than

wt+1 = wt − ηt(λ‖wt‖ − yixi), (11)

else (yi ~w · ~xi ≥ 1) than

wt+1 = wt − ηtλ‖wt‖. (12)

Any hyperplane can be written as the set of points ~x satisfying ~w · ~x− b = 0
where ~w is the normal vector to the hyperplane. The following constraint
were added to prevent data points from falling into the margin, for each i
either:

~w · ~xi − b ≥ 1, if yi = 1 ,
or

~w · ~xi − b ≤ 1, if yi = −1 .
These constraints state that each data point must lie on the correct side of
the margin. It could also be written as:

yi(~w · ~xi − b) ≥ 1, for all 1 ≤ i ≤ n. (13)

20

Figure 5: Maximum-margin hyperplane and margins for an SVM trained
with samples from two classes

5.1 Pegasos

Pegasos performs stochastic gradient descent on the primal objective (8) with
a carefully chosen stepsize. Pegasos gets as input S set of data examples, λ
the regularization parameter of SVM and T the number of iterations.

Input: S, λ, T
Initialize: Set w1 = 0
For t = 1, 2, ..., T
Choose it ∈ {1, ..., |S|} uniformly at random.
Set ηt = 1

λt

If yit〈wt, xit〉 < 1, then:
Set wt+1 ← (1− ηtλ)wt + ηtyitxit
Else (if yit〈wt, xit〉 ≥ 1):
Set wt+1 ← (1− ηtλ)wt
Output: wT+1

On each iteration Pegasos operates in the following manner. Initially, it
sets w1 to the zero vector. On iteration t, it first chooses a random train-
ing example (xit , yit) by picking an index it ∈ 1, ...,m uniformly at random.
Then, it replaces the objective in (8) with an approximation based on the

21

training example (xit , yit), yielding:

f(w; it) =
λ

2
‖w‖2 + l(w; (xit , yit)).

The sub gradient of the above approximate objective is given by:

∇t = λwt − 1[yit〈wt, xit〉 < 1]yitxit ,

where 1[y〈w, x〉 < 1] is the indicator function which takes a value of one if
its argument is true (w yields non-zero loss on the example (x, y)), and zero
otherwise. Then it updates wt+1 ← wt − ηt∇t using a step size of ηt = 1

λt
.

Note that this update can be written as:

wt+1 ←
(

1− 1

t

)
wt + ηt1 [yit〈wt, xit〉 < 1] yitxit .

After T iterations, the last iterate wT+1 is returned.

5.2 Numerical experiments

In this section we illustrate a data classification problem. We estimate a
hyperplane wTx− b from a set of data and its labels {(~xi, yi)}mi=1 using the a
built in SVM classifier in MATLAB and a stochastic gradient descent algo-
rithm Pegasos. We compare those two algorithms and show the hyperplane
each function finds.
In this example we would like to classify recipes as cupcakes or muffins.
When given a new recipe, our model could determine if it’s a cupcake or a
muffin. We took 82 different recipes of cupcakes and muffins and normalized
the data to percentage of the whole batter. Then, we chose 2 ingredients-
butter and sugar that we’ve noticed that are different between those two
types of recipes.

22

As you can see muffins have little sugar and little butter and cupcakes
have a lot of sugar and a lot of butter, therefore it’s a good example for SVM
classify.
First, the data went through the SVM classifier (applied by the MATLAB
function fitcsvm), the hyperplane and the support vectors solution for this
problem are given in Figure (6).

Figure 6: SVM hyperplane and support vector

The hyperplane defined by SVM is (0.93, 1.47)x− 10.71.
Then, we have implemented the Pegasos algorithm on MATLAB, the hyper-
plane and its margins are given in Figure (7)

23

Figure 7: Pegasos hyperplane and its margins

The hyperplane defined by Pegasos is (0.94, 1.46)x− 10.54.
The results we got are approximately the same as the result of the built in
SVM classifier function.
Another interesting information is the minimized function value, because we
used a stochastic method we wont see a stable descent, but stochastic steps
that their general target is the minimum.

24

6 Conclusion

In this project, we presented and described the gradient descent algorithm.
We presented two extensions of the algorithm one at the field of data fitting
and one on the field of classification.
We have shown that solving optimization problems is a common task in
machine learning that arises at many different applications. For large-scale
problems, those methods are often the only practical option, so extending
those methods with better convergence rate could yield a tremendous influ-
ence at this field. We have also been able to analyze and implement the
data fitting methods and classification method in an extremely simple and
efficient way.

7 Acknowledgements

I would like to thank Assoc. Prof. Aviv Gibali for giving me the opportunity
to work on this fascinating and instructive project. I would also like to thank
him for the time and help he granted me to help me move forward with this
project, while pushing me to be as independent as possible.

25

8 Matlab Codes

8.1 Data Fitting

FISTA Algorithm:

c l e a r ; c l o s e a l l ; c l c ;

[A, b ,m, n , Gray Image]=Conv Blur Img (’ images . jpg ’) ;
[AT,ATA, L ipsch i t z , S A] = Elements Calc (A) ;
lambda = 1 ;
%I n i t i a l s tep
X0 = ze ro s (S A (2) ,1) ; X02 = X0 ;
y0 = ze ro s (S A (2) ,1) ; y02 = y0 ;
t0 = 1 ;

NumOfIter = 200 ;

f o r i = 1 : NumOfIter
%I t e r a t i v e s tep
Xk = GradStep (L ipsch i t z , y0 ,AT,ATA, b) ;
Xk2 = GradX1Step (L ipsch i t z , y02 ,AT,ATA, b , lambda) ; %

with norm1
tk = 0.5∗(1+ s q r t (1+4∗ t0 ˆ2)) ;
yk=Xk+((t0−1)/ tk) ∗(Xk−X0) ;
yk2=Xk2+((t0−1)/ tk) ∗(Xk2−X02) ;

y0=yk ; y02=yk2 ; t0=tk ; X0=Xk ; X02=Xk2 ;

i f i==5
Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

e l s e i f i==50
Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

e l s e i f i ==100
Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

end

26

end

Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

ISTA Algorithm:

c l e a r ; c l o s e a l l ; c l c ;

[A, b ,m, n , Gray Image]=Conv Blur Img (’ images . jpg ’) ;
[AT,ATA, L ipsch i t z , S A] = Elements Calc (A) ;
lambda = 1 ;
%I n i t i a l s tep
X0 = ze ro s (S A (2) ,1) ; X02 = X0 ;
NumOfIter = 200 ;

f o r i = 1 : NumOfIter
%I t e r a t i v e s tep
Xk = GradStep (L ipsch i t z , X0 ,AT,ATA, b) ;
Xk2 = GradX1Step (L ipsch i t z , X02 ,AT,ATA, b , lambda) ; %

with norm1
X0=Xk; X02=Xk2 ;
i f i==5

Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

e l s e i f i==50
Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

e l s e i f i ==100
Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

end
end

Img Per I t e r (Xk, Xk2 ,m, n , Gray Image , i)
Fi (A, Xk, Xk2 , b , i)

Image Blur:

%This func t i on reads an image , b lur i t v ia convo lut ion

27

%and return t h i s a c t i on as a system o f l i n e a r equat ions
.

f unc t i on [A, b ,m, n , Image]=Conv Blur Img (image name)
%Convert to gray image
Image=double (rgb2gray (imread (image name))) ;
%Generate a Gaussian ke rne l o f s i z e 9∗9 std =4, and

convulate i t with the image
h = f s p e c i a l (’ gauss ian ’ , 9 , 4) ;
Blur Img=conv2 (h , Image) ;
%reshape a matrix as a vec to r column
m=s i z e (Image , 1) ;
n=s i z e (Image , 2) ;
p=s i z e (Blur Img , 1) ;
q=s i z e (Blur Img , 2) ;
b=double (reshape (Blur Img , p∗q , 1)) ;
%Generate a matrix operator o f Blurr
A=convmtx2 (h ,m, n) ;

subplot (1 , 2 , 1)
imshow (uint8 (Image))
t i t l e (’ Or i g i na l Image ’) ;
subp lot (1 , 2 , 2)
imshow (uint8 (Blur Img))
t i t l e (’ Blurred Image ’)

Elements Calculator:

f unc t i on [AT,ATA, L ipsch i t z , S A] = Elements Calc (A)
AT = A. ’ ;
ATA = AT∗A;
S A=s i z e (A) ;
L i p s c h i t z = 2∗ e i g s (ATA, 1) ; %%Lip = 2∗max eighenvalue
end

Gradient step:

f unc t i on Xk=GradStep (L ip s ch i t s , X0 ,AT,ATA, b)
Xk= X0−(1/ L i p s c h i t s) ∗(2∗ATA∗X0−2∗AT∗b) ;

end

Gradient step with norm1:

28

f unc t i on Xk=GradX1Step (L ip s ch i t s , X0 ,AT,ATA, b , lambda)
Xk = X0−(1/ L i p s c h i t s) ∗(2∗ATA∗X0−2∗AT∗b+lambda∗

s i gn (X0)) ;
end

Show image in current iteration:

f unc t i on Img Per I t e r (Xk, Xk2 ,m, n , Image , i)
f i g u r e
subplot (1 , 2 , 1) ;
imshow (uint8 (reshape (Xk,m, n))) ;
t = s p r i n t f (’PSNR a f t e r %d i e t r a t i o n s : ’ , i) ;
s t r 1 = s p r i n t f (’ |Ax−b|= %d ’ , psnr (u int8 (reshape (Xk,m

, n)) , u int8 (Image))) ;
t i t l e ({ t ; s t r 1 })

subplot (1 , 2 , 2) ;
imshow (uint8 (reshape (Xk2 ,m, n))) ;
s t r 2 = s p r i n t f (’ |Ax−b |+ |x | 1= %d ’ , psnr (u int8 (

reshape (Xk2 ,m, n)) , u int8 (Image))) ;
t i t l e (s t r 2)

end

Value of function in current iteration:

f unc t i on Fi (A, Xk, Xk2 , b , i)
f p r i n t f (’ I t e r a t i o n : %d , |A∗X−b|= %d ’ , i , norm(A∗Xk−b) ˆ2) ;
f p r i n t f (’ , |A∗X−b |+ |x | 1= %d\n ’ ,norm(A∗Xk2−b) ˆ2 + norm(

Xk2 , 1)) ;
end

8.2 Classification

main function SVM VS Pegasos:

c l e a r ; c l o s e a l l ; c l c ;

data = x l s r e ad (’ data ’) ;
% d e f i n e v a r i a b l e s

29

X = data (: , 4 : 5) ;
y = data (: , 6) ;

T=10000;
lambda = 0 . 0 1 5 ;

mdl = SVM solver (X, y) ;
[wT, l o s s , b]= Pe g a s o s s o l v e r (X, y , lambda ,T) ;

SVM solver:

f unc t i on [mdl]=SVM solver (X, y)
%%%%%%%f i t SVM model%%%%%%%%%%%%%%%%%%%%%%%%%
mdl = f i t c svm (X, y) ;
sv = mdl . SupportVectors ;
%%%%%%%pre s en t ing r e s u l t s o f svm model%%%%%%%
f i g u r e
g s c a t t e r (X(: , 1) ,X(: , 2) , y)
hold on
p lo t (sv (: , 1) , sv (: , 2) , ’ ko ’ , ’ MarkerSize ’ ,10)
d = 0 . 0 2 ;
[X1Grid , X2Grid] = meshgrid (min (X(: , 1)) : d : max(X(: , 1)) ,

min (X(: , 2)) : d : max(X(: , 2))) ;
XGrid = [X1Grid (:) , X2Grid (:)] ;
[˜ , s c o r e s] = p r e d i c t (mdl , XGrid) ;
contour (X1Grid , X2Grid , reshape (s c o r e s (: , 2) , s i z e (X1Grid))

, [0 0] , ’ k ’) ;
l egend (’ Cupcake ’ , ’ Muffin ’ , ’ Support Vector ’ , ’ Optimal

hyperplane ’)
f p r i n t f (’The hyperplane de f ined by SVM i s [(%.2 f ,%.2 f)X

%.2 f \n ’ , mdl . Beta , mdl . Bias) ;
end

Pegasos solver:

f unc t i on [w, l o s s v a l , b]= Pe g a s o s s o l v e r (X, y , lambda ,T)
[n , ˜] = s i z e (X) ;
%%%i n i t i a l va lue s%%%
w = ze ro s (2 , 1) ;
l o s s v a l=ze ro s (T, 1) ;

30

b=sum(y−X∗w) /n ;
f o r t= 1 :T

eta = 1/(lambda∗ t) ;
permi = randperm (n) ;
f o r i = 1 : n

j=permi (i) ;
i f y (j) ∗(dot (w,X(j , :) ’)+b) < 1

w = (1− eta ∗ lambda)∗w + eta ∗y (j)∗X(j , :) ’ ;
b = b + eta ∗y (j) ;

e l s e
w = (1− eta ∗ lambda)∗w;

end
end
l=max(0 ,1 − (y . ∗ (X∗w))) ;
l o s s v a l (t) = 0.5∗ lambda∗w’∗w + (1/n)∗sum(l) ;

end

f i g u r e
s tep = 100 ;
semi logy (1 : s tep :T, l o s s v a l (1 : s tep : end) , ’ r−. ’ , ’

LineWidth ’ , 1 . 5) ;
x l a b e l (’ i t e r a t i o n ’) ;
y l a b e l (’ Loss func t i on value ’) ;
a x i s ([1 T 0 max(l o s s v a l)]) ;
t i t l e (’ Convergence o f Pegasos a lgor i thm ’) ;

% v i s u a l i z e
f i g u r e
xp = l i n s p a c e (min (X(: , 1)) , max(X(: , 1))) ;
yp = − (w(1) ∗xp +b) / w(2) ;
yp1 = − (w(1) ∗xp +b − 1) / w(2) ; % margin boundary f o r

support v e c t o r s f o r y=1 (muff in)
yp0 = − (w(1) ∗xp +b + 1) / w(2) ; % margin boundary f o r

support v e c t o r s f o r y=−1 (cupcake)

i cupcake = f i n d (y==−1) ;% index o f cupcake samples
i m u f f i n = f i n d (y==1) ;% index o f muff in samples

31

p lo t (X(i cupcake , 1) , X(i cupcake , 2) , ’ ro ’) ;
hold on
p lo t (X(i muf f i n , 1) , X(i mu f f i n , 2) , ’ bo ’) ;
p l o t (xp , yp , ’−k ’ , xp , yp1 , ’−−g ’ , xp , yp0 , ’−−r ’) ;
t i t l e (s p r i n t f (’ Pegasos c l a s s i f i e r with i t s boundary ,

lambda = %g ’ , lambda)) ;

f p r i n t f (’The hyperplane de f ined by Pegasos i s (%.2 f ,%.2
f)X %.2 f \n ’ ,w, b) ;

end

32

References

[1] Shalev-Shwartz, Shai, et al. ”Pegasos: Primal estimated sub-gradient
solver for svm.” Mathematical programming 127.1 (2011): 3-30.

[2] Beck, Amir, and Marc Teboulle. ”A fast iterative shrinkage-thresholding
algorithm for linear inverse problems.” SIAM journal on imaging sciences
2.1 (2009): 183-202.

[3] Beck, Amir. Introduction to nonlinear optimization: Theory, algorithms,
and applications with MATLAB. Vol. 19. Siam, 2014.

[4] https://see.stanford.edu/materials/lsoeldsee263/05-ls.pdf

[5] https://homepages.inf.ed.ac.uk/rbf/HIPR2/gsmooth.htm

33

	Abstract
	Introduction
	Preliminaries
	Data Fitting
	ISTA
	FISTA
	Numerical experiments

	Classification
	Pegasos
	Numerical experiments

	Conclusion
	Acknowledgements
	Matlab Codes
	Data Fitting
	Classification

