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Abstract

In this project we are concern with the Convex Feasibility Problem
(CFP) which stands at the core of many real-world problem reformu-
lations.

We are focus on a specific scheduling task which is known as the
Unary Resource Constraint problem and propose a new reformulation
of the problem as a feasibility problem. This reformulation allows
to apply the class of projection methods and in particular we choose
the Douglas-Rachford and Von Neumann Alternating Projections Al-
gorithms which attracts much attention in recent years due to their
effectiveness.

I would like to thank the mathematics department of ORT Braude
College for being so helpful and supportive during my bachelor studies.
A special gratitude is to Dr. Aviv Gibali who guide me through this
interesting project. His time, effort and support along the way yielded
the success of this work.

3



1 Introduction

In this project we are concern with the the Convex Feasibility Problem (CFP)
which is phrased as follows. For i = 0, 1, · · · ,m−1, let Ci ⊆ Rn be nonempty,
closed and convex sets. The CFP is formulated as follows.

find a point x∗ ∈ C := ∩m−1i=0 Ci. (1.1)

The CFP has been used to model significant real-world problems in imag-
ing, sensor networks, radiation therapy treatment planning, resolution en-
hancement and in many others; see e.g., [5]. One of the successful class of
iterative methods for solving CFPs are known as Projection Methods. These
are iterative algorithms that use projections onto sets, relying on the prin-
ciple that when a family of sets is present, then projections onto the given
individual sets are easier to perform than projections onto other sets (inter-
sections, image sets under some transformation, etc.) that are derived from
the given individual sets. Their main advantage, which makes them success-
ful in real-world applications, is computational. They commonly are able to
handle huge-size problems of dimensions beyond which more sophisticated
methods cease to be efficient or even applicable due to memory requirements
(see, e.g., [9, 11]). See illustrations of different types of projection methods
in Figure 1 which is taken from [10].

Figure 1: Different projection methods for the linear case. The figure is
reproduced from [10]
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Two specific algorithms of interest in the class of projection methods, are
the Douglas-Rachford (DR) [12] and Von Neumann Alternating Projections
method [16]. The Douglas-Rachford algorithm was originally proposed for
solving a system of linear equations arising in heat conduction problems.
Lions and Mercier [15] were the ones who made the major work in this
field and adjusted and extended the algorithm successfully for solving CFPs
and even more general problems, such as zero of the sum of two maximally
monotone operators. For further and deeper investigation and generalization
the readers are referred to the works of Bauschke et al. for example, [6, 2, 8, 7]
and the references therein.

The Alternating Projections Algorithm is designed for best approximation
problem, that is finding the projection onto the intersection of two closed
subspaces in Hilbert space. The interested reader is referred to [4, 5, 9].
Observe that while both methods are designed for solving two-sets CFPs,
there exist many techniques and generalizations which enable to apply the
algorithms for solving the general CFP (1.1) with any finite number of sets.
For example, two major examples which are explained in details later are the
product space reformulation [17] and the Cyclic Douglas-Rachford Algorithm
[3].

In this project we propose a new reformulation of the Unary Resource
Constraint problem as a feasibility problem and then suggest how the Douglas-
Rachford and the Alternating Projections algorithms can be applied for solv-
ing it.
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2 Preliminaries

We start with several definitions and notions.

Definition 2.1 Let C ⊂ Rn be a closed and convex set.

(i) The closest point projection in C is a mapping PC : Rn → C
which assign for any x ∈ Rn an element denoted by PC(x) and is char-
acterized by the fact that PC (x) ∈ C and is the solution of the following
optimization problem

PC(x) = Argmin{‖z − x‖ | z ∈ C}. (2.1)

It is known that for any point x ∈ Rn, the following characterization of
the projection hold.

i) ‖PC(x)− PC(y)‖2 ≤ 〈PC(x)− PC(y), x− y〉 ∀y ∈ C;
ii) ‖PC(x)− y‖2 ≤ ‖x− y‖2 − ‖x− PC(x)‖2 ∀y ∈ C;
iii) 〈(I − PC)x− (I − PC)y, x− y〉 ≥ ‖(I − PC)x− (I − PC)y‖2 ∀y ∈ C.

For properties of the metric projection, the interested reader could be referred
to [14, Section 3].

(ii) The reflection in the set C is a mapping RC : Rn → Rn defined as
RC(x) = 2PC(x)− x.

Several important examples in which the projection onto the sets has a
close formula is given next.

Example 2.2 (1) Projection onto half-space. Let the half-space

H := {z ∈ Rn | 〈z, a〉 ≤ β} (2.2)

where a ∈ Rn and β ∈ R. The projection onto H is given as following.

PH(x) =

{
x− 〈x,a〉−β‖a‖2 a if 〈x, a〉 > β

x if 〈x, a〉 ≤ β.
(2.3)

(2) Projection onto a box. A box in Rn is a Cartesian product of closed
intervals,

� :=
n∏
i=1

[αi, βi] (2.4)
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where αi and βi ∈ R. The projection onto � is given as following.

[P�(x)]i =


xi if xi ∈ [αi, βi]
βi xi > βi
αi xi < αi.

(2.5)

In particular the projection onto the non-negative orthant Rn
+ is obtained by

choosing αi = 0 and βi = +∞ for all i = 1, . . . , n.[
PRn

+
(x)
]
i

=

{
xi if xi ≥ 0
0 else.

(2.6)

Proofs for the above formulas can be found for example in [9, 4.1.3] and
for the convenient of the reader as well as it usage to our analysis we bring
next proof of the first example.

Proof. It is clear in (2.3) that if 〈x, a〉 ≤ β then PH(x) = x. On the
other hand, if 〈x, a〉 < β, denote by y := x − (〈x, a〉 − β)/(‖a‖2)a. Clearly
〈y, a〉 = β so y ∈ H. Now for some y ∈ H we have

〈x− y, z − y〉 =
〈x, a〉 − β
‖a‖2

(〈z, a〉 − 〈y, a〉) ≤ 0. (2.7)

Using the characterization of the metric projection and the fact that PH(y) =
y we get that

PH(x) = x−
(〈x, a〉 − β)+

‖a‖2
a (2.8)

where (w)+ := max{w, 0} and this completes the proof.

Definition 2.3 Let T : Rn −→ Rn be an operator and let C ⊂ Rn.
(i) The fixed point set of T denoted by Fix(T ) is defined as

Fix(T ) := {x ∈ Rn | T (x) = x} . (2.9)

(ii) The operator T is called nonexpansive if

‖T (x)− T (y)‖ ≤ ‖x− y‖ for all x, y ∈ Rn. (2.10)

(iii) The operator T is called firmly nonexpansive on C if

〈T (x)− T (y), x− y〉 ≥ ‖T (x)− T (y)‖2 for all x, y ∈ C. (2.11)
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The next remarks are essential for our convergence analysis and it is quite
straight forward which relies on the above definitions.

Remark 2.4 (i) In case that C ⊂ Rn is convex, then both PC and RC are
single-valued operators and moreover PC is firmly nonexpansive and RC is
nonexpansive.

(ii) Let C1, C2 ⊂ Rn be non-empty, closed and convex. Define the operator

TC1,C2 := 1/2 (RC2RC1 + I) = PC2 (2PC1 − I) + (I − PC2) (2.12)

then TC1,C2 is firmly nonexpansive and

Fix (TC1,C2) = {x̄ ∈ Rn | PC2(x̄) ∈ C1 ∩ C2} . (2.13)

The operator TC1,C2 is known in the literature as the Douglas-Rachford

operator.

Following the above we can define the Douglas-Rachford Algorithm. Let
A,B ⊆ Rn be non-empty, closed and convex sets.

Algorithm 1 The Douglas-Rachford Algorithm for 2-sets CFP

Initialization: Choose an arbitrary initial point x0 ∈ Rn and set k = 0.
Iteration step: Given the current iterate xk, calculate the next iterate as

xk+1 = TA,B(xk) (2.14)

Another related algorithm which is used in our numerical experiments
as comparison is the Von Neumann Alternating Projections Algorithm [16].
The method is designed for best approximation problem, that is finding the
projection onto the intersection of two closed subspaces in Hilbert space.
Let H be a real Hilbert space, and let A and B be closed subspaces. Choose
x ∈ H and construct the sequences {ak}∞k=0 and {bk}∞k=0 by{

b0 = x,
ak = PA(bk−1) and bk = PB(ak), k = 1, 2, . . . ,

(2.15)

where PA and PB denote the orthogonal projection operators ofH onto A and
B, respectively. Von Neumann showed [16, Lemma 22] that both sequences
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{ak}∞k=0 and {bk}∞k=0 converge strongly to PA∩B(x). This algorithm is known
as von Neumann’s alternating projections method. Observe that not only the
sequences converge strongly, but also that their common limit is the nearest
point to x in A ∩B.

See geometrical interpolation of the Douglas-Rachford and the Alternat-
ing Projections iterative steps are presented in Figures 2 and 3 (taken Dr.
D. Rubén Campoy Garćıa thesis [13]).

Figure 2: The iterative step of the Douglas-Rachford algorithm with the sets
A and B.
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Figure 3: The Alternating Projections algorithm with the subspaces A and
B.

The convergence of the Douglas-Rachford and the Alternating Projections
Algorithms follows directly from the below Opial’s Theorem which is also
known in the literature as the Krasnosel’skĭı-Mann Theorem.

Theorem 2.5 Let H be a real Hilbert space and C ⊂ H be closed and convex.
Assume that T : C → C is firmly nonexpansive with Fix(T ) 6= ∅. Then, for
an arbitrary x0 ∈ C, the sequence {xk+1 = T (xk)}∞k=0 converges weakly to
z ∈ Fix(T ).

Next we discuss the general convex feasibility problem which involves
more than two sets. From now on bold symbols are used for sets and opera-
tors in the appropriate product space.

Proposition 2.6 Let C1, . . . , Cr ⊂ Rn be non-empty, closed and convex sets.
Denote C := C1 × C2 . . .× Cr then the projection in the product space is

P C
(
x1, . . . , xr

)
=
(
PC1

(
x1
)
, . . . , PCr (xr)

)
(2.16)

and the reflection is

RC
(
x1, . . . , xr

)
=
(
2PC1

(
x1
)
− x1, . . . , 2PCr (xr)− xr

)
(2.17)

In particular the projection and reflection with respect to the diagonal set

D :=
{(
x1, . . . , xr

)
∈ Rr·n | x1 = x2 = . . . = xr

}
10



is
PD

(
x1, . . . , xr

)
= (x̄, . . . , x̄) (2.18)

and
RD

(
x1, . . . , xr

)
=
(
2x̄− x1, . . . , 2x̄− xr

)
(2.19)

where x̄ = 1/r
∑r

i=1 x
i.

For the proof of the formulas above we make use of some known facts as
well as, for example, [1, Proposition 3.1].

Proof. Given a point x := (x1, . . . , xr) ∈ (Rn)r and its projection onto
the diagonal set PD(x) = (p, . . . , p). For any z ∈ Rn, (z, . . . , z) ∈D. So

0 = 〈x− (p, . . . , p) , (z, . . . , z)〉 =
r∑
i=1

〈xi − p, z〉 =

〈
r∑
i=1

xi − rp, z

〉
(2.20)

where p = 1/r
∑
xi and this complete the proof onto the diagonal set D.

For the projection onto the set C, take any c := (c1, . . . , cr) ∈ C and
p := (p1, . . . , pr) ∈

∏r
i=1 PCi

(xi) ⊆ C

‖x− c‖2 =
r∑
i=1

‖xi − ci‖2 ≥
r∑
i=1

‖xi − pi‖2 = ‖x− p‖2 (2.21)

and hence
∏r

i=1 PCi
(xi) ⊆ P C(x).

On the other hand, for the point p as above, suppose that for some
j ∈ {1, · · · , r}, pj /∈ PCj

(xj). So, for q := (q1, . . . , qr) ∈ (Rn)r such that
qj ∈ PCj

(xj) and qi = pi for i 6= j. Hence

‖x− c‖2 =
r∑
i=1

‖xi − pi‖2 >
r∑
i=1

‖xi − qi‖2 = ‖x− q‖2. (2.22)

Since q ∈ C, we conclude that p /∈ P C(x) and the desired result is obtained.

Following the above we obtain a product space reformulation which re-
duces the general feasibility problem to a two-set CFP.

Claim 2.7 Let C1, . . . , Cr ⊂ Rn be non-empty, closed and convex sets. Then
the following holds.

x∗ ∈ ∩ri=1Ci ⇔ (x∗, . . . , x∗) ∈ C ∩D. (2.23)
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Hence the above allows to implement the Douglas-Rachford algorithm
(2.14) and the alternating projections method for solving the general CFP as
a two-sets CFP in the appropriate product space and obtain a simultaneous
variants of the methods. As an example we present next the general DR
method. Choose an arbitrary initial point x0 ∈ Rn and define the initial
starting point in the product space x0 := (x0, . . . , x0) ∈ Rr·n. Given the k-th
iterate xk := (x1k, . . . , x

r
k) ∈ Rr·n, the next iterate of the Douglas-Rachford

algorithm is calculated as

xk+1 = TD,C (xk) =
1

2
(RCRD + I) (xk)

= P C (2PD (xk)− xk) + (I − PD) (xk) . (2.24)

It is clear that the sequence converges to a point z such that PD (z) ∈
C ∩D. Based on that we can use the following iterative step in the original
space. This approach was suggested under the name DR+Proj in [1].

xk+1 =

{
PD (TD,C (xk)) if x ∈ {400, 800, 1600, 3200, 6400}
TD,C (xk) else .

(2.25)

3 The Unary Resource Constraint problem

(URC)

In scheduling, unary resource models a set of non-interruptible activities I
which must not overlap in time – once a resource starts process an activity it
cannot stop or change the activity until processing of the activity is finished.
Each activity i ∈ I can be restricted by the following limits:

(i) the earliest possible starting time esti ∈ R+,

(ii) the latest possible completion time lcti ∈ R+,

(iii) the processing time pi ∈ R+.

A (sub)problem is to find a schedule satisfying all these requirements.
See illustration of 3 activities URC in Figure 4.
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Figure 4: Example of an URC problem with activities denoted by A,B and
C.

Next we reformulated the problem as a non-convex feasibility problem.

Notation 3.1 Given an indices set I, let x ∈ RI with entries esti, that is
x = (x1, . . . , xI) = (est1, . . . , estI). The constraints of URC can be presented
as follows.

(i) The processing time constraint. For any activity i ∈ I with
processing time pi, the starting time xi belongs to the interval [esti, lcti−pi],
this is expressed as the following box constraint set

� :=
N∏
i=1

[esti, lcti−pi]. (3.1)

(ii) Not overlap. For any two activities i 6= j ∈ I we have

Ci,j ∪ Cj,i :=
{
x ∈ RI | xj − xi ≥ pi

}
∪
{
x ∈ RI | xi − xj ≥ pj

}
. (3.2)

This set is non-convex as the union of two half-spaces:

Ci,j :=
{
x ∈ RI | 〈(x1, . . . , xi, . . . , xj, . . . , xI) , (0, . . . ,−1, . . . , 1, . . . , 0)〉 ≥ pi

}
(3.3)

and

Cj,i :=
{
x ∈ RI | 〈(x1, . . . , xi, . . . , xj, . . . , xI) , (0, . . . , 1, . . . ,−1, . . . , 0)〉 ≥ pj

}
.

(3.4)
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In general one should include a non-negativity constraints, that is

RI
+ :=

{
x ∈ RI | xi ≥ 0

}
(3.5)

but due to the description of the problem, we can assume that � ⊂ RI
+.

See illustration of the above constraints for two disjoint xi, xj in Figures
5-6.

Figure 5: The non-overlapping constraints.

Figure 6: The processing time and non-negativity constraints.
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So, solution to the Unary Resource Constraint problem is a solution to
the following non-convex feasibility problem.

Find a point x∗ such that x∗ ∈ � ∩ ∩i 6=jCi,j. (3.6)

In order to apply Douglas-Rachford algorithm we use the product space
transformation and we also have to define the projection mapping onto the
constraints sets (3.1) and (3.2). While the projection onto � is given ex-
plicitly by (2.5), respectively; the projection onto (since it is not convex)
Ci,j ∪ Cj,i is calculated as the result of the following corollary.

Corollary 3.2 For any i, j ∈ I with i 6= j, the set Ci,j∪Cj,i is non-convex as
a union of two non-intersecting half-spaces. For any x ∈ RI

+ the projection
in Ci,j ∪ Cj,i is given as (not unique).

[
PCi,j∪Cj,i

(x)
]
i,j

=



{
xi + (1/2) (pj − δi,j)
xj − (1/2) (pj − δi,j)

{
if xi > xj
and xi − xj ≤ pj{

xi − (1/2) (pi − δi,j)
xj + (1/2) (pi − δi,j)

{
if xj > xi
and xj − xi ≤ pi

xi, xj else
(3.7)

where δi,j = |xi − xj|.
Proof. Let x ∈ RI and i 6= j ∈ I. According to (3.7) PCi,j∪Cj,i

(x) = x.
On the other hand if x /∈ Ci,j∪Cj,i then with out the loss of generality xj > xi
and xj − xi ≤ pi then we calculate the projection of x onto Ci,j and onto Cj,i
((3.3) and (3.4)) separately based on (2.3).

PCi,j
(x) :=

{
x− xj−xi−pi

2
(0, . . . ,−1, . . . , 1, . . . , 0) if x /∈ Ci,j

x if x ∈ Ci,j
(3.8)

and

PCj,i
(x) :=

{
x− xi−xj−pj

2
(0, . . . , 1, . . . ,−1, . . . , 0) if x /∈ Cj,i

x if x ∈ Cj,i.
(3.9)

Now if
∥∥x− PCi,j

(x)
∥∥ < ∥∥x− PCj,i

(x)
∥∥ then PCi,j∪Cj,i

(x) = PCi,j
(x).and if∥∥x− PCi,j

(x)
∥∥ >

∥∥x− PCj,i
(x)
∥∥ then PCi,j∪Cj,i

(x) = PCj,i
(x). In case that∥∥x− PCi,j

(x)
∥∥ =

∥∥x− PCj,i
(x)
∥∥ choose PCi,j∪Cj,i

(x) to be either PCi,j
(x) or

PCj,i
(x). This completes the proof.
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Remark 3.3 Let x ∈ RI and denote x̃ ∈ RI the sorted x in a increasing
order, that is x̃i < x̃i+1 for all i ∈ {1, . . . , I−1}. For i < j with δ̃i,j = |x̃i − x̃j|
the projection onto Ci,j ∪ Cj,i can be simplified as follows.

[
PCi,j∪Cj,i

(x̃)
]
i,j

=


{
x̃i − (1/2) (p̃i − δi,j)
x̃j + (1/2) (p̃i − δi,j)

if x̃j − x̃i < p̃i

x̃i, x̃j else.

The complexity of sequentially evaluating PCi,j∪Cj,i
(x̃) for all i 6= j is then

reduces to either PCi,j
(x) or PCj,i

(x) which are projections onto half-spaces!
Hence, sorting x can be achieved on average of O(I log I) and then we just

have to check the successive coordinates of x̃ which is O(I), hence O(I log I)
in total. On the other hand, evaluating P∩i6=jCi,j∪Cj,i

(x) consists of
(
I
2

)
check-

ups which is O(I2).
Another modification which can be used along the run of the algorithm,

which also avoids non-convexity, is to check before applying the projection
onto Ci,j ∪ Cj,i if xi > xj or xi ≤ xj and then project onto Ci,j or Cj,i
respectively.

Denote N :=
(
1 +

(
I
2

))
= (I(I − 1))/2 + 1. We now transform the URC

problem to a feasibility problem in the product space RI·N with the following
two sets

C :=
N∏
i=1

Ci = �×
∏
i 6=j

Ci,j, and the diagonalD. (3.10)

4 The Algorithm

We now present the modified pseudo code of the Douglas-Rachford Algorithm
(2.24) for solving the Unary Resource Constraint problem in the product
space RI·N with the sets C and D. Given an indices set I, and consider the
product space RI·N .

xk+1 = TD,C (xk) =
RCRD + I

2
(xk) . (4.1)

Claim 4.1 Assume that esti, lcti and pi are natural numbers and the URC
problem (3.6) is solvable. If the iterative step (4.1) generated a solution
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(
x1, . . . , xN

)
∈ RI·N , then it can be transformed into an integer solution(

z1, . . . , zN
)
∈ NI·N .

Proof. Given
(
x1, . . . , xN

)
∈ RI·N we sort it (O (N logN)) in increasing

order and obtain (xi1 , . . . , xiN ) such that ik ∈ {1, . . . , N} and xik < xik+1 for
all k ∈ {1, . . . , N − 1}. Since we assumed that

(
x1, . . . , xN

)
∈ RI·N

+ solves
(3.6) it also satisfies the constraints:

xik ∈ [estik , lctik −pik ] for all ik ∈ {1, . . . , N}, (4.6)

and
xik + pik ≤ xik+1 for all ik ∈ {1, . . . , N − 1}. (4.7)

We claim that
(
z1, . . . , zN

)
= (bxi1e , . . . , bxiN e) ∈ NI·N also fulfils (4.6) and

(4.7). be is the closest integer function. If zk = bxike for all ik ∈ {1, . . . , N}
then (4.6) holds; Otherwise there exists at least one zk 6= bxike. For that ik we
have estik ≤ xik ≤ lctik −pik with estik , lctik and pik natural numbers. Hence
to the property of the floor function estik ≤ bxike ≤ lctik −pik . For (4.7) we
relay on monotonicity of the floor function to obtain for all ik ∈ {1, . . . , N−1}

xik + pik ≤ xik+1

⇔
zk + pik =

⌊
xik
⌉

+ pik =
⌊
xik + pik

⌉
≤
⌊
xik+1

⌉
= zk+1 (4.8)

which completes the proof.
The above result suggest one of the below stopping rule for DR algorithm

for solving the URC problem:

b(PD (xk))e ∈ C ∩D (4.9)

or due to the nature of the problem

PD (xk) ∈ C ∩D. (4.10)

Similar stopping rule was used in [1] for solving for example Sudoku
puzzles.
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5 Examples

In this section we illustrate two and three dimensional URC examples with
the geometric interpretation. Given the following data.

Table 1: The data.

Tasks est lst p feasible interval
1 1 15 6 [1, 9]
2 3 8 3 [3, 5]

In Figures 7-9 the constraints are present as well as the solution region.

Figure 7: Representation of the data
of Table 1.

Figure 8: Geometric interpretation of
the URC problem given in Table 1.
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Figure 9: Close-up of the solution region in Figure 8.

Now we consider a three dimensional problem.

Table 2: The data.

Tasks est lst p feasible interval
1 1 23 5 [1, 18]
2 6 18 3 [6, 15]
3 2 12 4 [2, 8]

Figure 10: Representation of the data
of Table 2.

Figure 11: Geometric interpretation of
the URC problem given in Table 2.
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Figure 12: Another look at the solution region of the URC problem given in
Table 2
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6 Conclusions

This present project we propose a new mathematical reformulation for a
special scheduling problem known as the Unary Resource Constraint prob-
lem.While traditionally this is a discrete optimization problem which is solved
via methods designed for such cases, the new convex feasibility modelling
”open the door” to apply continues optimization methods such as projection
methods and in particular Douglas-Rachford and Von Neumann Alternating
Projections Algorithms which attracts much attention in recent years due to
their effectiveness.

Besides the new reformulation ,this work suggest several interesting di-
rection s for future work, for example instead of finding any solution to
the URC, one can apply the newly introduced Superiorization methodology
(http://math.haifa.ac.il/YAIR/bib-superiorization-censor.html) which aims
for finding a feasible solution which is superior with respect to an additional
objective. Clearly one superior solution will be the one with total processing
time, but one can also be interested in solutions which terminates the earliest
and so.
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Algorithm 2 The Douglas-Rachford Algorithm for solving the URC

1: Choose an arbitrary starting point x0 = (x10, · · · , xN0 ) ∈ RI×N,

where each xl0 ∈ RI for l = 1, · · · , N .
2: (Diagonal reflection): Given the current iterate xk =

(x1k, · · · , xNk ), update the point yk+1 = (y1k+1, · · · , yNk+1) such that

for all l = 1, · · · , N:

ylk+1 =
2

N

N∑
l=1

xlk − xlk. (4.2)

3: (Box reflection): update y1k+1 = R�(y1k+1) using (2.5).

4: (Non-overlap reflection): for any two indices i, j ∈ I (in

an increasing order), update the points y2k+1, · · · , yNk+1 in an

increasing order such that for all l = 2, · · · , N:

5: if [ylk+1]i > [ylk+1]j then
6:

ylk+1 = 2P Cj,i

(
ylk+1

)
− ylk+1 (4.3)

using (3.8).
7: else if [ylk+1]j > [ylk+1]i then
8:

ylk+1 = 2P Ci,j

(
ylk+1

)
− ylk+1 (4.4)

using (3.9)
9: end if

10: (Next iterate): update xk+1 = (x1k+1, · · · , xNk+1) such that for

all l = 1, · · · , N,

xlk+1 =
ylk+1 + xlk

2
. (4.5)

11: k → k + 1
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