אורט Uואר המכללה האקדמית להנדסה ORT Braude College

המחלקה למתמטיקה
Department of Mathematics

פרויקט מoכם לתואר בוגר במדעים (B.Sc) במתמטיקה שימושית

בעיית מזעור עלויות למודל "input - output" טוכטטי לירון שטרוה

Cost minimization problem for stochastic inputoutput model

Liron Stroh

פרויקט מסכם לתואר בוגר במדעים (B.Sc) במתמטיקה שימושית

בעיית מזעור עלויות למודל "input - output" טטוכטי
לירון שטרוה

Cost minimization problem for stochastic inputoutput model

Liron Stroh

Advisor:
מנחה:
Ass.Prof.VladimirTuretsky
פרופ"ח ולדימיר טורצקי
Problem formulation:
מנon הבעיה :
Prof.Jurij Kozicki
פרופ יורי קוזטצקי

Karmiel כרמיאל

Table of contents

1. Introduction 2
2. Problem statement 4
2.1 Stochastic Input Output model 4
2.2 Minimization problem with stochastic input - output model 5
3. Solution of minimization problem for stochastic input-output model 5
3.1 Calculation of probability functions 6
3.2 Derivation of constraints set 13
3.2.1 Case 1 13
3.2.2 Case 2 18
3.2.3 Case 3 21
3.3 Solution and examples 23
3.3.1 Case 1 24
3.3.2 Case 2 32
3.3.3 Case 3 34
4. Conclusions and future work 37
Appendix: MATLAB programs 38

1. Introduction

Basic Input-output model:

The input - output model is trying to solve the question:
"What level of output should each of the n industries in an economy produce, in order to satisfy the total demand for that product?"

Professor Wassily Leontief developed the input - output model in the 1930's. The model is a method to analyze the relationships between different sectors in the economy. In order to produce a product each sector may need to use its own products or other sectors products. With the input-output model one can find the outputs products number of a sector in order to satisfy the total demand.
On October 18 in 1973, Wassily Leontief won Nobel Prize in economy for his work in this area.

Input-output model assumption:

1. Each sector produces one product.
2. Each sector uses a fixed input ratio for the production of its product.

Using of Linear Algebra for the Model:

We will use basic Linear Algebra to describe and solve the model.
We will assume that there are n independent sectors: $S_{1}, S_{2}, \ldots . ., S_{n}$
Let $m_{i j}$ be the number of units produced by sector S_{i} to produce one unit of sector S_{j}.
Let p_{i} be number of units produced by sector S_{i}.
Then the value $m_{i j} p_{j}$ is the number of units produced by sector S_{i} and consumed by sector S_{j}.
Let d_{i} be the demand for product i outside the industry.
Assuming that the production of each sector is completely consumed, the total number of units produced by sector i will be :
$p_{i}=m_{1 i} p_{1}+m_{2 i} p_{2}+\cdots+m_{i i} p_{i}+\cdots+m_{n i} p_{n}+d_{i}, i=1 \ldots . n$
The equations for all n sectors are:
$\left\{\begin{array}{c}p_{1}=m_{11} p_{1}+m_{21} p_{2}+\cdots+m_{n 1} p_{n}+d_{1} \\ p_{2}=m_{12} p_{1}+m_{22} p_{2}+\cdots+m_{n 2} p_{n}+d_{2} \\ \vdots \\ p_{i}=m_{1 i} p_{1}+m_{2 i} p_{2}+\cdots+m_{i i} p_{i}+\cdots+m_{n i} p_{n}+d_{i} \\ \vdots \\ p_{i}=m_{1 n} p_{1}+m_{2 n} p_{2}+\cdots+m_{n n} p_{n}+d_{n}\end{array}\right.$
or in a matrix form:
$p=C p+d$
where:
$C=\left(\begin{array}{cccc}m_{11} & m_{21} & \cdots & m_{n 1} \\ m_{12} & m_{22} & \cdots & m_{n 2} \\ \vdots & \vdots & & \vdots \\ \vdots \\ m_{1 n} & m_{2 n} & \cdots & m_{n n}\end{array}\right) p=\left(\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ p_{n}\end{array}\right) d=\left(\begin{array}{c}d_{1} \\ d_{2} \\ \vdots \\ d_{n}\end{array}\right)$

Matrix C is called input-output matrix or consumption matrix. The consumption matrix C shows the quantity of inputs needed to produce one unit of a good. The rows of the matrix represent the producing sector of the economy. The columns of the matrix represent the consuming sector of the economy. The entry m_{ij} in consumption matrix represent what percent of the total production value of sector j is spent on products from sector i. Demand vector d represents demand from the non-producing sector of the economy. Vector p represents the total amount of the product produced.

Solution of the equation:

$p=C p+d \rightarrow p-C p=d \rightarrow(I-C) p=d \rightarrow p=(I-C)^{-1} d$
Assumptions:

- Consumption matrix C and demand vector d have nonnegative entries
- The inverse of the matrix (I-C) exists
- The production vector p has nonnegative entries and has unique solution for the model
Definition: Consumption matrix C can be called economically feasible if the inverse of the matrix (I-C) exists.

Example:

Let's consider an economy with two products, A and B . The demand for them is $\mathrm{d}=\binom{7}{4}$ in order to create one A unit we need 0.2 units of B and to create one B unit we need 0.4 units of A. The Consumption matrix is:

$$
C=\left(\begin{array}{cc}
0 & 0.2 \\
0.4 & 0
\end{array}\right)
$$

The solution can be found with equation (4) :

$$
\begin{aligned}
& (I-C)=\left(\begin{array}{cc}
1 & -0.2 \\
-0.4 & 1
\end{array}\right) \rightarrow(I-C)^{-1}=\left(\begin{array}{cc}
1.087 & 0.2174 \\
0.4348 & 1.0870
\end{array}\right) \rightarrow p=(I-C)^{-1} d= \\
& \left(\begin{array}{cc}
1.087 & 0.2174 \\
0.4348 & 1.0870
\end{array}\right)\binom{7}{4}=\binom{8.4783}{7.3913}
\end{aligned}
$$

In this case the inverse matrix $(\mathrm{I}-\mathrm{C})^{-1}$ exists, so Matrix C is economically feasible.

Minimum problem with input - output model

In real life section owners will want not only to solve the input-output problem, but also desire to minimize the costs function and to maximize profits.

Let's assume that for each product the cost to produce is c_{i} and the price in the market it P_{i}. Then the profit maximization problem will be:

$$
\max \left[\sum_{i=1}^{n}\left(P_{i}-c_{i}\right) p_{i}\right]
$$

If we will assume that the price in the market for each product is fixed then we can solve the production cost minimization problem instead:

$$
\begin{equation*}
\min \left[\sum_{i=1}^{n} c_{i} p_{i}\right] \tag{6}
\end{equation*}
$$

2. Problem Statement

2.1 Stochastic Input Output model

The objective of this project is studying the stochastic version if the input-output model.

The main idea will be the same, but instead of known / fixed coefficients on matrix C. we will assume they are stochastic variables with a known distribution.

We will assume that there are n independent sectors: $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots . ., \mathrm{S}_{\mathrm{n}}$
Let m_{ij} be the number of produced units by sector S_{i} to produce one unit of sector S_{j}, but now m_{ij} is a stochastic variable with a known distribution.
Let p_{i} be the number of units produced by sector S_{i}.
Then the value $\mathrm{m}_{\mathrm{ij}} \mathrm{p}_{\mathrm{j}}$ is the number of units produced by sector S_{i} and consumed by sector S_{j}.
Let d_{i} be the demand for product i outside the industry.
Then the total number of units produced by sector i are:
$p_{i}=m_{1 i} p_{1}+m_{2 i} p_{2}+\cdots+m_{i i} p_{i}+\cdots+m_{n i} p_{n}+d_{i}, i=1 \ldots . n$
The equation for all n sectors will be:
$\left\{\begin{array}{c}p_{1}=m_{11} p_{1}+m_{21} p_{2}+\cdots+m_{n 1} p_{n}+d_{1} \\ p_{2}=m_{12} p_{1}+m_{22} p_{2}+\cdots+m_{n 2} p_{n}+d_{2} \\ \vdots \\ p_{i}=m_{1 i} p_{1}+m_{2 i} p_{2}+\cdots+m_{i i} p_{i}+\cdots+m_{n i} p_{n}+d_{i} \\ \vdots \\ p_{i}=m_{1 n} p_{1}+m_{2 n} p_{2}+\cdots+m_{n n} p_{n}+d_{n}\end{array}\right.$
Or in a matrix form:
$p=C p+d$
Where:
$C=\left(\begin{array}{cccc}m_{11} & m_{21} & \cdots & m_{n 1} \\ m_{12} & m_{22} & \cdots & m_{n 2} \\ \vdots & \vdots & & \vdots \\ m_{1 n} & m_{2 n} & \cdots & m_{n n}\end{array}\right) p=\left(\begin{array}{c}p_{1} \\ p_{2} \\ \vdots \\ p_{n}\end{array}\right) d=\left(\begin{array}{c}d_{1} \\ d_{2} \\ \vdots \\ d_{n}\end{array}\right)$
Now we can't calculate the inverse matrix to find the solution, instead we can search for a solution which will solve the equation with a probability above a specific number.

In this paper we will describe and solve the Stochastic Input Output in a specific case.

2.2 Minimum problem with stochastic input - output model

In the stochastic input - output model the costs to produce one unit are not known or fixed. They are stochastic variables with a known distribution.

The costs can be represented as a vector:
$c=\left(\begin{array}{c}c_{1} \\ c_{2} \\ \vdots \\ c_{n}\end{array}\right), \mathrm{c}_{\mathrm{i}}$ is the cost for producing one unit of p_{i}.
Now the problem is formatted as follows:

$$
\begin{equation*}
\min c^{T} p \tag{11}
\end{equation*}
$$

subject to:

$$
\begin{equation*}
P(p-C p \geq d) \geq 1-\alpha \tag{12}
\end{equation*}
$$

where α is a probability, $0<\alpha<1$

3 Solution of minimization problem for stochastic input-output model

In this project we study the following particular case of the problem.
Our assumptions are:

$$
\begin{gathered}
n=2 \\
m_{11}=0, \mathrm{~m}_{12} \sim \mathrm{U}[0, \mathrm{~b}], \mathrm{m}_{22}=0, \mathrm{~m}_{21} \sim \mathrm{U}[0, \mathrm{~d}]
\end{gathered}
$$

Where $X \sim U\left[x_{1}, x_{2}\right]$ means that X is a uniform distributed random variable on $\left[x_{1}, x_{2}\right]$
The assumptions $\mathrm{m}_{11}=0, \mathrm{~m}_{22}=0$ mean that for the production of product p_{i} there is no need for the same product.

In such case the matrices are:
$C=\left(\begin{array}{cc}0 & m_{12} \\ m_{21} & 0\end{array}\right) p=\binom{p_{1}}{p_{2}} d=\binom{d_{1}}{d_{2}}$
The corresponding equations are:
$\left\{\begin{array}{l}p_{1}=m_{12} p_{2}+d_{1} \\ p_{2}=m_{21} p_{1}+d_{2}\end{array} \rightarrow\left\{\begin{array}{l}p_{1}-m_{12} p_{2}=d_{1} \\ p_{2}-m_{21} p_{1}=d_{2}\end{array}\right.\right.$
Since m_{12}, m_{21} are stochastic variables we can't solve the problem directly, but we can search for $\mathrm{p}_{1}, \mathrm{p}_{2}$ which will solve the problem with specific probability,
$P\left(p_{1}-m_{12} p_{2} \geq d_{1}, p_{2}-m_{21} p_{1} \geq d_{2}\right) \geq 1-\alpha$,
where α is a small probability $0 \leq \alpha \leq 1$

3.1 Calculation of probability functions

The probability function for uniform stochastic variable $x \sim U[0, b]$ is:

$$
P(x \leq y)=F(y)=\left\{\begin{array}{c}
0, y<0 \\
\frac{y}{b}, 0 \leq y \leq b \\
1, y>b
\end{array}\right.
$$

Therefore:

$$
\begin{gather*}
\quad P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right)=P\left(-m_{12} p_{2} \geq d_{1}-p_{1}\right)=P\left(m_{12} \leq-\frac{d_{1}-p_{1}}{p_{2}}\right) \\
=\left\{\begin{array}{c}
0,-\frac{d_{1}-p_{1}}{p_{2}}<0 \\
-\frac{d_{1}-p_{1}}{p_{2}}, 0 \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \\
1,-\frac{d_{1}-p_{1}}{p_{2}}>b
\end{array}=\left\{\begin{array}{c}
0,-\frac{d_{1}-p_{1}}{p_{2}}<0 \\
\frac{-d_{1}+p_{1}}{p_{2} b}, 0 \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \\
1,-\frac{d_{1}-p_{1}}{p_{2}}>b
\end{array}\right.\right. \tag{16}
\end{gather*}
$$

Similarly:

$$
\begin{gather*}
P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=P\left(-m_{21} p_{1} \geq d_{2}-p_{2}\right)=P\left(m_{21} \leq-\frac{d_{2}-p_{2}}{p_{1}}\right) \\
=\left\{\begin{array}{c}
0,-\frac{d_{2}-p_{2}}{p_{1}}<0 \\
\frac{-\frac{d_{2}-p_{2}}{p_{1}}}{d}, 0 \leq-\frac{d_{2}-p_{2}}{p_{1}} \leq d \\
1,-\frac{d_{2}-p_{2}}{p_{1}}>d
\end{array}=\left\{\begin{array}{c}
0,-\frac{d_{2}-p_{2}}{p_{1}}<0 \\
\frac{-d_{2}+p_{2}}{p_{1} d}, 0 \leq-\frac{d_{2}-p_{2}}{p_{1}} \leq d \\
1,-\frac{d_{2}-p_{2}}{p_{1}}>d
\end{array}\right.\right. \tag{17}
\end{gather*}
$$

Now we will calculate $P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)$

$$
\begin{gather*}
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)= \\
\left\{\begin{array}{cc}
0 & ,-\frac{d_{1}-p_{1}}{p_{2}}<0 \text { or }-\frac{d_{2}-p_{2}}{p_{1}}<0 \\
\frac{-d_{1}+p_{1}}{p_{2} b} \cdot \frac{-d_{2}+p_{2}}{p_{1} d}, 0 \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \text { and } 0 \leq-\frac{d_{2}-p_{2}}{p_{1}} \leq d \\
\frac{-d_{1}+p_{1}}{p_{2} b} & , 0 \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \text { and }-\frac{d_{2}-p_{2}}{p_{1}}>d \\
\frac{-d_{2}+p_{2}}{p_{1} d} & ,-\frac{d_{1}-p_{1}}{p_{2}}>b \text { and } 0 \leq-\frac{d_{1}-p_{2}}{p_{1}} \leq d \\
1 & ,-\frac{d_{1}-p_{1}}{p_{2}}>b \text { and }-\frac{d_{2}-p_{2}}{p_{1}}>d
\end{array}\right.
\end{gather*}
$$

Simplification of the probability function:

Case 1:

$$
\begin{gathered}
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=0,-\frac{d_{1}-p_{1}}{p_{2}}<0 \text { or }-\frac{d_{2}-p_{2}}{p_{1}}<0 \\
-\frac{d_{1}-p_{1}}{p_{2}}<0 \rightarrow-d_{1}+p_{1}<0 \rightarrow p_{1}<d_{1}
\end{gathered}
$$

For the same reasons the second condition becomes:

$$
-\frac{d_{2}-p_{2}}{p_{1}}<0 \rightarrow p_{2}<d_{2}
$$

In conclusion the conditions to get $P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=0$ are:
$p_{1}<d_{2}$ or $p_{2}<d_{1}$
In this case the economy will not reach the required probability.This case is less interesting, so we will remove it from our studying.

Case 2:

$$
\begin{gathered}
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=\frac{-d_{1}+p_{1}}{p_{2} b} \cdot \frac{-d_{2}+p_{2}}{p_{1} d}, \\
a \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \text { and } c \leq-\frac{d_{1}-p_{2}}{p_{1}} \leq d \\
0 \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \rightarrow 0 \leq-d_{1}+p_{1} \leq b p_{2} \rightarrow d_{1} \leq p_{1} \leq b p_{2}+d_{1}
\end{gathered}
$$

For the same reasons the second condition becomes:

$$
\begin{array}{r}
d_{2} \leq p_{2} \leq d p_{1}+d_{2} \\
d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2} \tag{20}
\end{array}
$$

Case 3:

$$
\begin{aligned}
P\left(p_{1}-m_{12} p_{2}\right. & \left.\geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=\frac{-d_{1}+p_{2}}{p_{2} b}, \\
0 & \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \text { and }-\frac{d_{2}-p_{2}}{p_{1}}>d
\end{aligned}
$$

From case 2 the first condition becomes:

$$
0 \leq-\frac{d_{1}-p_{1}}{p_{2}} \leq b \rightarrow d_{1} \leq p_{1} \leq b p_{2}+d_{1}
$$

The second condition:

$$
\begin{gather*}
-\frac{d_{2}-p_{2}}{p_{1}}>d \rightarrow p_{2}-d_{2}>d p_{1} \rightarrow p_{2}>d p_{1}+d_{2} \\
d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } p_{2}>d p_{1}+d_{2} \tag{21}
\end{gather*}
$$

Case 4:

$$
\begin{array}{r}
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=\frac{-d_{1}+p_{2}}{p_{1} d} \\
-\frac{d_{1}-p_{1}}{p_{2}}>b \text { and } 0 \leq-\frac{d_{1}-p_{2}}{p_{1}} \leq d \\
-\frac{d_{1}-p_{1}}{p_{2}}>b \rightarrow-d_{1}+p_{1}>b p_{2} \rightarrow p_{1}>b p_{2}+d_{1}
\end{array}
$$

From case 2, the second condition becomes:

$$
\begin{gather*}
d_{2} \leq p_{2} \leq d p_{1}+d_{2} \\
p_{1}>b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2} \tag{22}
\end{gather*}
$$

Case 5:

$$
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=1,-\frac{d_{1}-p_{1}}{p_{2}}>b \text { and }-\frac{d_{2}-p_{2}}{p_{1}}>d
$$

From cases 3, 4 the conditions for the case become:
$p_{1}>b p_{2}+d_{1}$ and $p_{2}>d p_{1}+d_{2}$
After rewriting the conditions by using (19)-(23) the probability function is:

$$
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=
$$

$$
\left\{\begin{array}{cc}
\frac{-d_{1}+p_{1}}{p_{2} b} \cdot \frac{-d_{2}+p_{2}}{p_{1} d} & , p_{1}<d_{1} \text { or } p_{2}<d_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2} \tag{24}\\
\frac{-d_{1}+p_{1}}{p_{2} b} & , d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } p_{2}>d p_{1}+d_{2} \\
\frac{-d_{2}+p_{2}}{p_{1} d} & , p_{1}>b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2} \\
1 & , p_{1}>b p_{2}+d_{1} \text { and } p_{2}>d p_{1}+d_{2}
\end{array}\right.
$$

Looking again on condition (23):
$p_{1}>b p_{2}+d_{1}$ and $p_{2}>d p_{1}+d_{2}$, if $p_{2}=d p_{1}+d_{2}$ then:

$$
p_{1}>b p_{2}+d_{1} \rightarrow p_{1}>b\left(d p_{1}+d_{2}\right)+d_{1} \rightarrow p_{1}>b d p_{1}+b d_{2}+d_{1}
$$

Therefore if $b d \geq 1$ then the Non-equality will never be satisfied. In this project we will assume that $b d \geq 1$ because the case which $P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=1$
is less interesting, eq. (20) means that the economy meets the demand and production on 100% of the cases.

After rewriting the conditions and under the assumption:

$$
\begin{equation*}
b d \geq 1 \tag{26}
\end{equation*}
$$

the probability function becomes:

$$
\begin{gather*}
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)= \\
\left\{\begin{array}{lc}
\frac{-d_{1}+p_{1}}{p_{2} b} \cdot \frac{-d_{2}+p_{2}}{p_{1} d} & , d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2} \\
\frac{-d_{1}+p_{1}}{p_{2} b} & , d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } p_{2}>d p_{1}+d_{2} \\
\frac{-d_{2}+p_{2}}{p_{1} d} & , p_{1}>b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
\end{array}\right. \tag{27.1}
\end{gather*}
$$

Experimental testing (experimental_testing_1_a.m):

The program randomly chooses $\mathrm{m}_{12}, \mathrm{~m}_{21}$, when $\mathrm{m}_{12} \sim \mathrm{U}[0, \mathrm{~b}], \mathrm{m}_{21} \sim[0, \mathrm{~d}]$. The other parameters are fixed: $b=1, d=1.01, d_{1}=1, d_{2}=1$ and $\mathrm{p}_{1}, \mathrm{p}_{2}$ are chosen for every one of the cases. Then program runs 100000000 times for every case and sum the number of runs where for ransoms variables $\mathrm{m}_{12}, \mathrm{~m}_{21}$ the following conditions are satisfied:

$$
\left\{\begin{array}{l}
p_{1}-m_{12} p_{2} \geq d_{1} \\
p_{2}-m_{21} p_{1} \geq d_{2}
\end{array}\right.
$$

Then it compares it to the probability function (24).
Results:

Id	p_{1}	p_{2}	Case	P based on (24)	P based on testing
1	0.5	0.9	(24.1)	0	0
2	1.5	1.9	(24.2)	0.156331	0.156339
3	1.5	5	(24.3)	0.1	0.10004
4	5	1.5	(24.4)	0.099	0.09899

Lemma 1: If $1-b d(1-\alpha)=0$ then the probability function in case 1 receive only negative values.

Proof:

The probability function and the conditions in case 1 :

$$
\begin{aligned}
P\left(p_{1}-m_{12} p_{2}\right. & \left.\geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=\frac{-d_{1}+p_{2}}{p_{2} b} \cdot \frac{-d_{1}+p_{2}}{p_{1} d}, d_{1} \leq p_{1} \\
& \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
\end{aligned}
$$

We will demand that the probability function will satisfy the following Inequality:

$$
P\left(p_{1}-m_{12} p_{2} \geq d_{1}\right) P\left(p_{2}-m_{21} p_{1} \geq d_{2}\right)=\frac{-d_{1}+p_{2}}{p_{2} b} \cdot \frac{-d_{1}+p_{2}}{p_{1} d} \geq 1-\alpha
$$

where $0 \leq \alpha \leq 1$.

$$
\begin{gathered}
\frac{-d_{1}+p_{1}}{p_{2} b} \cdot \frac{-d_{2}+p_{2}}{p_{1} d} \geq 1-\alpha \rightarrow\left(-d_{1}+p_{1}\right)\left(-d_{2}+p_{2}\right) \geq b d p_{1} p_{2}(1-\alpha) \rightarrow \\
d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}-b d p_{1} p_{2}(1-\alpha) \geq 0 \rightarrow \\
d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)] \geq 0
\end{gathered}
$$

Let $f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]$

$$
\begin{equation*}
1-b d(1-\alpha)=0 \rightarrow f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1} \tag{28}
\end{equation*}
$$

The conditions for case 1 are:

$$
d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
$$

Therefore:

$$
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1} \leq d_{1} d_{2}-d_{1} d_{2}-d_{1} d_{2}=-d_{1} d_{2}<0
$$

So for every $\mathrm{p}_{1}, \mathrm{p}_{2}$ if $1-b d(1-\alpha)=0$ the probability function doesn't satisfy the condition $f(p) \geq 0$

Lemma 2: if $1-b d(1-\alpha)>0$ then the probability function in case 1 can receive positive values.

Proof:

$$
\begin{gathered}
1-b d(1-\alpha)>0 \\
1-b d(1-\alpha)>0 \rightarrow 1>b d(1-\alpha)>0
\end{gathered}
$$

The probability function in this case is:

$$
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]
$$

And the conditions are:

$$
d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
$$

Let $\varepsilon=[1-b d(1-\alpha)]>0$.Then:

$$
\begin{aligned}
f(p)=d_{1} d_{2} & -d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2} \varepsilon \\
& \geq d_{1} d_{2}-d_{1}\left(d p_{1}+d_{2}\right)-d_{2}\left(b p_{2}+d_{1}\right)+d_{1} d_{2} \varepsilon= \\
=d_{1} d_{2} & -d_{1} d p_{1}-d_{1} d_{2}-d_{2} b p_{2}-d_{1} d_{2}+d_{1} d_{2} \varepsilon= \\
& =-d_{1} d p_{1}-d_{2} b p_{2}+d_{1} d_{2}(\varepsilon-1)
\end{aligned}
$$

We demand that
$f(p) \geq 0 \rightarrow-d_{1} d p_{1}-d_{2} b p_{2}+d_{1} d_{2}(\varepsilon-1) \geq 0$, but $-d_{1} d p_{1}-d_{2} b p_{2}+$ $d_{1} d_{2}(\varepsilon-1)$ is a negative number.

$$
\begin{aligned}
& f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2} \varepsilon \\
& \quad \leq d_{1} d_{2}-d_{1} d_{2}-d_{1} d_{2}+\left(b p_{2}+d_{1}\right)\left(d p_{1}+d_{2}\right) \varepsilon \\
& =-d_{1} d_{2}+\left(b p_{2} d p_{1}+b p_{2} d_{2}+d_{1} d p_{1}+d_{1} d_{2}\right) \varepsilon \\
& \quad=d_{1} d_{2}(\varepsilon-1)+\left(b p_{2} d p_{1}+b p_{2} d_{2}+d_{1} d p_{1}\right) \varepsilon
\end{aligned}
$$

We found upper and lower bands for $f(p)$:

$$
\begin{aligned}
d_{1} d_{2}(\varepsilon-1)+ & \left(b p_{2} d p_{1}+b p_{2} d_{2}+d_{1} d p_{1}\right) \varepsilon \geq f(p) \\
& \geq-d_{1} d p_{1}-d_{2} b p_{2}+d_{1} d_{2}(\varepsilon-1)
\end{aligned}
$$

Therefore if $d_{1} d_{2}(\varepsilon-1)+\left(b p_{2} d p_{1}+b p_{2} d_{2}+d_{1} d p_{1}\right) \varepsilon \geq 0$ then $f(p)$ might be positive.

$$
\begin{gather*}
d_{1} d_{2}(\varepsilon-1)+\left(b p_{2} d p_{1}+b p_{2} d_{2}+d_{1} d p_{1}\right) \varepsilon \geq 0 \rightarrow \\
p_{1} \varepsilon\left(b p_{2} d+d_{1} d\right) \geq d_{1} d_{2}(1-\varepsilon)-b p_{2} d_{2} \varepsilon \rightarrow \tag{29}
\end{gather*}
$$

$p_{1} \geq \frac{d_{1} d_{2}(1-\varepsilon)-b p_{2} d_{2} \varepsilon}{\varepsilon\left(b p_{2} d+d_{1} d\right)}$

We can't calculate when $f(p) \geq 0$ because $f(p) \geq-d_{1} d p_{1}-d_{2} b p_{2}+d_{1} d_{2}(\varepsilon-1)$ and $\geq-d_{1} d p_{1}-d_{2} b p_{2}+d_{1} d_{2}(\varepsilon-1)$ is a negative number, but we can say that when

$$
p_{1}<\frac{d_{1} d_{2}(1-\varepsilon)-b p_{2} d_{2} \varepsilon}{\varepsilon\left(b p_{2} d+d_{1} d\right)}
$$

then :

$$
f(p)<0
$$

Now let us show that $d_{1}>\frac{d_{1} d_{2}(1-\varepsilon)-b p_{2} d_{2} \varepsilon}{\varepsilon\left(b p_{2} d+d_{1} d\right)}$ therefore the condition for p_{1} stay $p_{1} \geq d_{1}$:

$$
\begin{aligned}
& d_{1}-\frac{d_{1} d_{2}(1-\varepsilon)-b p_{2} d_{2} \varepsilon}{\varepsilon\left(b p_{2} d+d_{1} d\right)}=d_{1}-\frac{d_{1} d_{2}(1-\varepsilon)-b p_{2} d_{2} \varepsilon}{\varepsilon d\left(b p_{2}+d_{1}\right)} \\
& \quad \geq d_{1}-\frac{d_{1} d_{2}(1-\varepsilon)-b p_{2} d_{2} \varepsilon}{\varepsilon d p_{1}}=\frac{d_{1} \varepsilon d p_{1}-d_{1} d_{2}(1-\varepsilon)+b p_{2} d_{2} \varepsilon}{\varepsilon d p_{1}} \\
& d_{1} \varepsilon d p_{1}-d_{1} d_{2}(1-\varepsilon)+b p_{2} d_{2} \varepsilon=d_{1} \varepsilon d p_{1}-d_{1} d_{2}+d_{1} d_{2} \varepsilon+b p_{2} d_{2} \varepsilon= \\
& d_{1} d p_{1}[1-b d(1-\alpha)]-d_{1} d_{2}+d_{1} d_{2}[1-b d(1-\alpha)]+b p_{2} d_{2}[1-b d(1-\alpha)]= \\
& d_{1} d p_{1}[1-b d(1-\alpha)]-d_{1} d_{2}+d_{1} d_{2}-d_{1} d_{2} b d(1-\alpha)+b p_{2} d_{2}[1- \\
& b d(1-\alpha)]=d_{1} d p_{1}[1-b d(1-\alpha)]-d_{1} d_{2} b d(1-\alpha)+b p_{2} d_{2}[1-b d(1-\alpha)] \geq \\
& d_{1} d p_{1}[1-b d(1-\alpha)]+b p_{2} d_{2}[1-b d(1-\alpha)] \geq 0
\end{aligned}
$$

Lemma 3: if $1-b d(1-\alpha)<0$ then the probability function in case 1 receive only negative values.

Proof:

$$
1-b d(1-\alpha)<0
$$

Let $-\varepsilon=[1-b d(1-\alpha)], \varepsilon>0$ then the probability function in this case is:

$$
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}-p_{1} p_{2} \varepsilon
$$

And the conditions are:

$$
d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
$$

Therefore:

$$
\begin{gathered}
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}-p_{1} p_{2} \varepsilon \leq d_{1} d_{2}-d_{1} d_{2}-d_{1} d_{2}-d_{1} d_{2} \varepsilon \\
=-d_{1} d_{2}-d_{1} d_{2} \varepsilon<0
\end{gathered}
$$

So for every $\mathrm{p}_{1}, \mathrm{p}_{2}$ if $1-b d(1-\alpha)<0$ the probability function doesn't satisfy the condition $f(p) \geq 0$

With Lemma 1, 2, 3 and other assumptions we made the conditions for a solution in case 1 of the probability function are:
$\left\{\begin{array}{c}b d \geq 1 \\ 1-b d(1-\alpha)>0\end{array}\right.$

Experimental testing:

The program randomly chooses p_{1}. The other parameters are fixed: $b=1, d=$ $1.01, d_{1}=1, d_{2}=1, p_{2}=3$. Then program runs 100000000 times for cases I,II and III and checks if the probability function is equal or higher than 0 :

Case	$1-b d(1-\alpha)$	Number of times $f(p) \geq 0$	Number of time $f(p)<0$
I	0	0	100000000
II	0.0910	0	100000000
II	0.1920	58267362	41732638
II	0.4950	100000000	0
III	-0.0100	0	100000000
III	-0.0090	0	100000000
III	-0.0043	0	10000000
III	$-3.0400 \mathrm{e}-004$	0	100000000

We can see that in cases I and III we always get negative values for $f(p)$ and in case II, we get mixed values.

3.2 Derivation of constraints set

3.2.1 Case 1

Now we would like to find the intersection of the conditions in case 1 and the probability function in case 1 .

The probability function in case 1 is:

$$
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]
$$

$f(p)$ is a hyperbolic function. In figure 1 you can see an example of the line $f(p)=$ 0 .

Figure 1

The conditions in case 1 are:

$$
d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
$$

Definition:

Let $S_{2}=\left\{\left(p_{1}, p_{1}\right) \mid d_{1} \leq p_{1} \leq b p_{2}+d_{1}\right.$ and $\left.d_{2} \leq p_{2} \leq d p_{1}+d_{2}\right\}$
We will find the intersection of $f(p)=0$ with the conditions defined at S_{2} :

$$
\left\{\begin{array}{c}
p_{1}=d_{1} \\
p_{1}=b p_{2}+d_{1} \\
p_{2}=d_{2} \\
p_{2}=d p+d_{2}
\end{array}\right.
$$

In figure 2 you can see an example of the intersection of the line $f(p)=0$ and S_{2}.

Figure 2
Lemma 4: There is no intersection point between $f(p)=0$ and $d_{1}=p_{1}$ which belongs to S_{2}.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{c}
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]=0 \\
d_{1}=p_{1}
\end{array}\right. \\
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)] \\
=d_{1} d_{2}-d_{1} p_{2}-d_{2} d_{1}+d_{1} p_{2}[1-b d(1-\alpha)]= \\
d_{1} p_{2}[1-b d(1-\alpha)-1]=d_{1} p_{2} b d(1-\alpha)=0 \rightarrow p_{2}=0
\end{gathered}
$$

In S_{2} we demand $d_{2} \leq p_{2}$ therefore $\left(p_{1}, p_{2}\right)=\left(d_{1}, 0\right) \notin S_{2}$.
Lemma 5: There is an intersection point between $f(p)=0$ and $p_{1}=b p_{2}+d_{1}$ which belongs to S_{2} and the point is $\left(p_{1}, p_{2}\right)=\left(b p_{2}+d_{1}, p_{2}\right)=\left(b \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}+\right.$ $d_{1}, \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}$.

Proof:

$$
\left\{\begin{array}{c}
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]=0 \\
p_{1}=b p_{2}+d_{1}
\end{array}\right.
$$

$$
\begin{gathered}
f(x)=d_{1} d_{2}-d_{1} p_{2}-d_{2}\left(b p_{2}+d_{1}\right)+\left(b p_{2}+d_{1}\right) p_{2}[1-b d(1-\alpha)]= \\
d_{1} d_{2}-d_{1} p_{2}-d_{2} b p_{2}-d_{1} d_{2}+\left(b p_{2}^{2}+d_{1} p_{2}\right)[1-b d(1-\alpha)]= \\
-d_{1} p_{2}-d_{2} b p_{2}+b p_{2}^{2}[1-b d(1-\alpha)]+d_{1} p_{2}[1-b d(1-\alpha)]= \\
-d_{1} p_{2}-d_{2} b p_{2}+b p_{2}^{2}[1-b d(1-\alpha)]+d_{1} p_{2}-b d(1-\alpha) d_{1} p_{2}= \\
-d_{2} b p_{2}+b p_{2}^{2}[1-b d(1-\alpha)]-b d(1-\alpha) d_{1} p_{2}= \\
p_{2}\left(-d_{2} b+b p_{2}[1-b d(1-\alpha)]-b d(1-\alpha) d_{1}\right)=0 \\
\rightarrow\left\{\begin{array}{c}
p_{2}=0, \text { not in the range } \\
-d_{2} b+b p_{2}[1-b d(1-\alpha)]-b d(1-\alpha) d_{1}=0
\end{array}\right. \\
b p_{2}[1-b d(1-\alpha)]=d_{2} b+b d(1-\alpha) d_{1} \rightarrow \\
p_{2}=\frac{d_{2} b+b d(1-\alpha) d_{1}}{b[1-b d(1-\alpha)]}=\frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}
\end{gathered}
$$

The intersection point $p_{2}=\frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}$ is in the range:
$d_{2}+d(1-\alpha) d_{1}>d_{2}$ And $1>[1-b d(1-\alpha)]>0$, therefore $\frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}>d_{2}$

$$
\begin{gathered}
d p_{1}+d_{2}=d\left(b p_{2}+d_{1}\right)+d_{2}=d b p_{2}+d d_{1}+d_{2}>p_{2} \rightarrow \\
\left(p_{1}, p_{2}\right)=\left(b p_{2}+d_{1}, p_{2}\right)=\left(b \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}+d_{1}, \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}\right) \in S_{2}
\end{gathered}
$$

Lemma 6: There is no intersection point between $f(p)=0$ and $d_{2}=p_{2}$ which belongs to S_{2}.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{c}
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]=0 \\
d_{2}=p_{2}
\end{array}\right. \\
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]=(p) \\
=d_{1} d_{2}-d_{1} d_{2}-d_{2} p_{1}+p_{1} d_{2}[1-b d(1-\alpha)] \\
=-d_{2} p_{1}+p_{1} d_{2}[1-b d(1-\alpha)] \\
=p_{1}\left(-d_{2}+d_{2}[1-b d(1-\alpha)]\right)=0 \rightarrow p_{1}=0
\end{gathered}
$$

In S_{2} we demand $d_{1} \leq p_{1}$ therefore $\left(p_{1}, p_{2}\right)=\left(0, d_{2}\right) \notin S_{2}$.
Lemma 7: There is an intersection point between $f(p)=0$ and $p_{2}=d p_{1}+d_{2}$ which belongs to S_{2} and the point is
$\left(p_{1}, p_{2}\right)=\left(\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}, d p_{1}+d_{2}\right)=\left(\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}, d \frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}+d_{2}\right)$.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{c}
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]=0 \\
p_{2}=d p_{1}+d_{2} \\
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]= \\
d_{1} d_{2}-d_{1}\left(d p_{1}+d_{2}\right)-d_{2} p_{1}+p_{1}\left(d p_{1}+d_{2}\right)[1-b d(1-\alpha)]= \\
d_{1} d_{2}-d_{1} d p_{1}-d_{1} d_{2}-d_{2} p_{1}+\left(d p_{1}^{2}+d_{2} p_{1}\right)[1-b d(1-\alpha)]= \\
-d_{1} d p_{1}-d_{2} p_{1}+\left(d p_{1}^{2}+d_{2} p_{1}\right)[1-b d(1-\alpha)]= \\
-d_{1} d p_{1}-d_{2} p_{1}+d p_{1}^{2}+d_{2} p_{1}-\left(d p_{1}^{2}+d_{2} p_{1}\right)[b d(1-\alpha)]= \\
-d_{1} d p_{1}+d p_{1}^{2}-\left(d p_{1}^{2}+d_{2} p_{1}\right)[b d(1-\alpha)]= \\
-d_{1} d p_{1}+d p_{1}^{2}-p_{1}\left(d p_{1}+d_{2}\right)[b d(1-\alpha)]= \\
p_{1}\left(-d_{1} d+d p_{1}-\left(d p_{1}+d_{2}\right)[b d(1-\alpha)]\right)=0 \\
\quad p_{1}=0, n o t i n t h e r a n g e \\
-d_{1} d+d p_{1}-\left(d p_{1}+d_{2}\right)[b d(1-\alpha)]=0 \\
-d_{1} d+d p_{1}-\left(d p_{1}+d_{2}\right)[b d(1-\alpha)]=0 \rightarrow \\
-d_{1} d+d p_{1}-d p_{1}[b d(1-\alpha)]-d_{2}[b d(1-\alpha)]=0 \rightarrow \\
d p_{1}-d p_{1}[b d(1-\alpha)]=d_{1} d+d_{2}[b d(1-\alpha)] \\
p_{1}(d-d[b d(1-\alpha)])=d_{1} d+d_{2}[b d(1-\alpha)] \\
p_{1}=\frac{d_{1} d+d_{2}[b d(1-\alpha)]}{d-d[b d(1-\alpha)]}=\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}
\end{array}\right.
\end{gathered}
$$

From the same reasons as in case b , the intersection point belongs to S_{2}.
The intersection point is
$\left(p_{1}, p_{2}\right)=\left(\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}, d p_{1}+d_{2}\right)=\left(\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}, d \frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}+d_{2}\right)$
We found two intersection points:
$\hat{p}=\left(p_{1}, p_{2}\right)=\left(b \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}+d_{1}, \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}\right)$
$\tilde{p}=\left(p_{1}, p_{2}\right)=\left(\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}, d \frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}+d_{2}\right)$

In figure 3 you can see the intersection of the line $f(p)=0$ and S_{2} and the two intersection points which were calculated.

Figure 3,The red circles are the two intersection points

3.2.2 Case 2

The probability function in case 2 is $\frac{-d_{1}+p_{1}}{p_{2} b}$ and we demand $\frac{-d_{1}+p_{1}}{p_{2} b} \geq 1-\alpha$
$\rightarrow-d_{1}+p_{1} \geq p_{2} b(1-\alpha) \rightarrow p_{2} \leq \frac{-d_{1}+p_{1}}{b(1-\alpha)}$
And the conditions for case 2 are:

$$
d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } p_{2}>d p_{1}+d_{2}
$$

Definition:
Let $S_{3}=\left\{\left(p_{1}, p_{1}\right) \mid d_{1} \leq p_{1} \leq b p_{2}+d_{1}\right.$ and $\left.p_{2}>d p_{1}+d_{2}\right\}$
Let $f_{3}(p)=p_{2}-\frac{-d_{1}+p_{1}}{b(1-\alpha)}$
In figure 4 you can see an example of the intersection of the line $f_{3}(p)=0$ and S_{3}

Figure 4
Finding the intersection points of the line $f_{3}(p)=0$ and S_{3} :
Lemma 8: There is no intersection point between $f_{3}(p)=0$ and $d_{1}=p_{1}$ which belongs to S_{3}.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{c}
p_{2}=\frac{-d_{1}+p_{1}}{b(1-\alpha)} \\
d_{1}=p_{1}
\end{array}\right. \\
p_{2}=\frac{-d_{1}+d_{1}}{b(1-\alpha)}=0
\end{gathered}
$$

In S_{3} we demand $p_{2}>d p_{1}+d_{2}$ therefore $\left(p_{1}, p_{2}\right)=\left(d_{1}, 0\right) \notin S_{3}$.
Lemma 9: There is no intersection point between $f_{3}(p)=0$ and $p_{1}=b p_{2}+d_{1}$ which belongs to S_{3}.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{l}
p_{2}=\frac{-d_{1}+p_{1}}{b(1-\alpha)} \\
p_{1}=b p_{2}+d_{1}
\end{array}\right. \\
p_{2}=\frac{-d_{1}+p_{1}}{b(1-\alpha)}=\frac{-d_{1}+b p_{2}+d_{1}}{b(1-\alpha)}=\frac{b p_{2}}{b(1-\alpha)} \rightarrow \\
\rightarrow p_{2} b(1-\alpha)=b p_{2} \rightarrow p_{2}(1-\alpha)-p_{2}=0 \rightarrow \\
p_{2}(1-\alpha-1)=0 \rightarrow \alpha p_{2}=0 \rightarrow p_{2}=0
\end{gathered}
$$

In S_{3} we demand $p_{2}>d p_{1}+d_{2}$ therefore $\left(p_{1}, 0\right)=\left(d_{1}, 0\right) \notin S_{3}$.
Lemma 10: There is an intersection point between $f_{3}(p)=0$ and $p_{2}=d p_{1}+d_{2}$ which belongs to S_{3} and the point is $\left(p_{1}, p_{2}\right)=\left(\frac{d_{2} b(1-\alpha)}{(1-d b(1-\alpha))}, d \frac{d_{2} b(1-\alpha)}{(1-d b(1-\alpha))}+d_{2}\right)$.

$$
\begin{gathered}
\left\{\begin{array}{l}
p_{2}=\frac{-d_{1}+p_{1}}{b(1-\alpha)} \\
p_{2}=d p_{1}+d_{2}
\end{array}\right. \\
p_{2}=\frac{-d_{1}+p_{1}}{b(1-\alpha)}=d p_{1}+d_{2} \rightarrow-d_{1}+p_{1}=d p_{1} b(1-\alpha)+d_{2} b(1-\alpha) \rightarrow \\
p_{1}-d p_{1} b(1-\alpha)=d_{2} b(1-\alpha)+d_{1} \rightarrow p_{1}(1-d b(1-\alpha))=d_{2} b(1-\alpha)+d_{1} \rightarrow \\
p_{1}=\frac{d_{2} b(1-\alpha)+d_{1}}{(1-d b(1-\alpha))}, p_{2}=d p_{1}+d_{2}=d \frac{d_{2} b(1-\alpha)+d_{1}}{(1-d b(1-\alpha))}+d_{2}
\end{gathered}
$$

The intersection point for case 2 is: $\left(p_{1}, p_{2}\right)=\left(\frac{d_{2} b(1-\alpha)}{(1-d b(1-\alpha))}, d \frac{d_{2} b(1-\alpha)}{(1-d b(1-\alpha))}+d_{2}\right)(31)$
In figure 5 you can see the intersection of the line $f_{3}(p)=0$ and S_{3} and the intersection point which was calculated.

Figure 5

3.2.3 Case 3

The probability function in case 3 is $\frac{-d_{2}+p_{2}}{p_{1} d}$ and we demand $\frac{-d_{2}+p_{2}}{p_{1} d} \geq 1-\alpha$
$\rightarrow-d_{2}+p_{2} \geq p_{1} d(1-\alpha) \rightarrow p_{2} \geq p_{1} d(1-\alpha)+d_{2}$
And the conditions for case 3 are:

$$
p_{1}>b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
$$

Definition:
Let $S_{4}=\left\{\left(p_{1}, p_{1}\right) \mid p_{1}>b p_{2}+d_{1}\right.$ and $\left.d_{2} \leq p_{2} \leq d p_{1}+d_{2}\right\}$
Let $f_{4}(p)=p_{2}-p_{1} d(1-\alpha)+d_{2}$
In figure 6 you can see an example of the intersection of the line $f_{4}(p)=0$ and S_{4}

Figure 6

Finding the intersection points of the line $f_{4}(p)=0$ and the condition set S_{4} :
Lemma 11: There is an intersection point between $f_{4}(p)=0$ and $p_{1}=b p_{2}+d_{1}$ which belongs to S_{3} and the point is $\left(p_{1}, p_{2}\right)=\left(b \frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}+d_{1}, \frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}\right)$.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{c}
p_{2}=p_{1} d(1-\alpha)+d_{2} \\
p_{1}=b p_{2}+d_{1}
\end{array}\right. \\
p_{2}=p_{1} d(1-\alpha)+d_{2}=\left(b p_{2}+d_{1}\right) d(1-\alpha)+d_{2} \rightarrow
\end{gathered}
$$

$$
\begin{gathered}
p_{2}=\left(b p_{2}+d_{1}\right) d(1-\alpha)+d_{2} \rightarrow \\
p_{2}=d b p_{2}(1-\alpha)+d d_{1}(1-\alpha)+d_{2} \rightarrow \\
p_{2}-d b p_{2}(1-\alpha)=d d_{1}(1-\alpha)+d_{2} \rightarrow \\
p_{2}(1-d b(1-\alpha))=d d_{1}(1-\alpha)+d_{2} \rightarrow \\
p_{2}=\frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}, p_{1}=b p_{2}+d_{1}=b \frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}+d_{1}
\end{gathered}
$$

Lemma 12: There is no intersection point between $f_{4}(p)=0$ and $p_{2}=d_{2}$ which belongs to S_{4}.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{c}
p_{2}=p_{1} d(1-\alpha)+d_{2} \\
p_{2}=d_{2}
\end{array}\right. \\
p_{2}=p_{1} d(1-\alpha)+d_{2}=d_{2} \rightarrow p_{1} d(1-\alpha)=0 \rightarrow \\
p_{1}=0
\end{gathered}
$$

In S_{4} we demand $p_{1}>b p_{2}+d_{1}$ therefore $\left(0, p_{2}\right)=\left(0, d_{2}\right) \notin S_{4}$.
Lemma 13: There is no intersection point between $f_{4}(p)=0$ and $p_{2}=d p_{1}+d_{2}$ which belongs to S_{4}.

Proof:

$$
\begin{gathered}
\left\{\begin{array}{c}
p_{2}=p_{1} d(1-\alpha)+d_{2} \\
p_{2}=d p_{1}+d_{2}
\end{array}\right. \\
p_{2}=p_{1} d(1-\alpha)+d_{2}=d p_{1}+d_{2} \rightarrow p_{1} d(1-\alpha)=d p_{1} \rightarrow \\
p_{1} d(1-\alpha)-d p_{1}=0 \rightarrow p_{1}(d(1-\alpha)-d)=0 \rightarrow \\
p_{1}=0
\end{gathered}
$$

In S_{4} we demand $p_{1}>b p_{2}+d_{1}$ therefore $\left(0, p_{2}\right)=\left(0, d_{2}\right) \notin S_{4}$.
The intersection point for case 3 is: $\left(p_{1}, p_{2}\right)=\left(b \frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}+d_{1} \frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}\right)(33)$
Example of the line $p_{2}=p_{1} d(1-\alpha)+d_{2}$ with the conditions and the intersection point:

In figure 7 you can see the intersection of the line $f_{4}(p)=0$ and S_{4} and the intersection point which was calculated.

Figure 7

3.3 Solution and examples

Now that we have the intersection points for every case, we can find the solution for the minimum problem.

The problem:

$$
\min c^{T} p
$$

Subject to:

$$
P(p-C p \geq d) \geq 1-\alpha
$$

Where:
$c=\binom{c_{1}}{c_{2}}, \mathrm{c}_{\mathrm{i}}$ is the cost for producing one unit of p_{i}.
And the probability function is:

$$
\left\{\begin{array}{cl}
\frac{-d_{1}+p_{1}}{p_{2} b} \cdot \frac{-d_{2}+p_{2}}{p_{1} d} & , d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2} \tag{19}\\
\frac{-d_{1}+p_{1}}{p_{2} b} & , d_{1} \leq p_{1} \leq b p_{2}+d_{1} \text { and } p_{2}>d p_{1}+d_{2} \\
\frac{-d_{2}+p_{2}}{p_{1} d} & , p_{1}>b p_{2}+d_{1} \text { and } d_{2} \leq p_{2} \leq d p_{1}+d_{2}
\end{array}\right.
$$

The solution will be in one of the cases:1,2,3. The case where the solution exists deepens on the cost coefficients.

Let us try to find the conditions for a solution in every one of the cases and the solution itself.

3.3.1 Case 1:

In this we case there are two intersection points:
$\hat{p}=\left(p_{1}, p_{2}\right)=\left(b \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}+d_{1}, \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}\right)$
$\tilde{p}=\left(p_{1}, p_{2}\right)=\left(\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}, d \frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}+d_{2}\right)$

We will find the solution for the minimum problem where

$$
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]=0
$$

Proof:

Let's assume that the minimum solution is the point $\left(p_{1}, p_{2}\right)$ and that $f\left(p_{1}, p_{2}\right)>0$

$$
\begin{gathered}
c_{1} p_{1}+c_{2} p_{2}=M \\
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]>0 \rightarrow \\
p_{1}>\frac{d_{1} p_{2}-d_{1} d_{2}}{-d_{2}+p_{2}(1-b d(1-\alpha))}
\end{gathered}
$$

But, we can choose

$$
p_{1}^{*}=\frac{d_{1} p_{2}-d_{1} d_{2}}{-d_{2}+p_{2}(1-b d(1-\alpha))}
$$

So $p_{1}>p_{1}^{*}$

$$
c_{1} p_{1}+c_{2} p_{2}-p_{1}^{*} c_{1}-c_{2} p_{2}=c_{1}\left(p_{1}-p_{1}^{*}\right)>0 \rightarrow c_{1} p^{*}{ }_{1}+c_{2} p_{2}<M
$$

And this is contradiction to the fact that M is the minimum of the function.
The solution will exists in this case if the cost coefficients and the probability function will have the same gradient.

A solution $\left(p_{1}^{*}, p_{2}^{*}\right)$ will have to satisfy the condition:

$$
\nabla f\left(p_{1}^{*}, p_{2}^{*}\right) \| c
$$

Lemma 14: The slope of the line $f(p)=0$ is decreasing except the jump where the function in not defined.

Proof:

$$
\begin{aligned}
& p_{2}=\frac{d_{2} p_{1}-d_{1} d_{2}}{-d_{1}+p_{1}[1-b d(1-\alpha)]} \\
& p_{2}^{\prime}=\frac{d_{2}\left(-d_{1}+p_{1}[1-b d(1-\alpha)]\right)-\left(d_{2} p_{1}-d_{1} d_{2}\right)[1-b d(1-\alpha)]}{\left(-d_{1}+p_{1}[1-b d(1-\alpha)]\right)^{2}}= \\
& =\frac{-d_{1} d_{2}+d_{2} p_{1}[1-b d(1-\alpha)]-d_{2} p_{1}[1-b d(1-\alpha)]+d_{1} d_{2}[1-b d(1-\alpha)]}{\left(-d_{1}+p_{1}[1-b d(1-\alpha)]\right)^{2}} \\
& =\frac{d_{1} d_{2}[1-b d(1-\alpha)-1]}{\left(-d_{1}+p_{1}[1-b d(1-\alpha)]\right)^{2}}=-\frac{d_{1} d_{2} b d(1-\alpha)}{\left(-d_{1}+p_{1}[1-b d(1-\alpha)]\right)^{2}} \leq 0
\end{aligned}
$$

The line $f(p)=0$ is not defined in the point:

$$
p_{1}{ }^{*}=\frac{d_{1}}{1-b d(1-\alpha)}
$$

It is easy to see that in the two intersection points $\hat{p}, \tilde{p} p_{1}>p_{1}{ }^{*}$
Conclusion from Lemma 14: between the two intersection points the slope of the line $f(p)=0$ is decreasing and doesn't change its direction.

A solution will exists in this case if the following inequality will be satisfied:
$\min \left(-\frac{f_{p_{1}}^{\prime}(\tilde{p})}{f_{p_{2}}^{\prime}(\tilde{p})},-\frac{f_{p_{1}}^{\prime}(\hat{p})}{f_{p_{2}}^{\prime}(\hat{p})}\right) \leq-\frac{c_{1}}{c_{2}} \leq \max \left(-\frac{f_{p_{1}^{\prime}}^{\prime}(\tilde{p})}{f_{p_{2}}^{\prime}(\tilde{p})},-\frac{f_{p_{1}}^{\prime}(\hat{p})}{f_{p_{2}}^{\prime}(\hat{p})}\right)$
Inequality (28) means that only if the Gradient of the cost coefficients is between Gradients of the probability function at the intersection points the solution can be found in the case otherwise the solution will be found in one of the other cases.

$$
\begin{gathered}
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)] \\
f_{p_{1}}^{\prime}(p)=-d_{2}+p_{2}[1-b d(1-\alpha)] \\
f_{p_{2}}^{\prime}(p)=-d_{1}+p_{1}[1-b d(1-\alpha)] \\
f_{p_{1}}^{\prime}(\tilde{p})=-d_{2}+\left(d \frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}+d_{2}\right)[1-b d(1-\alpha)] \\
=-d_{2}+d\left(d_{1}+d_{2}[b(1-\alpha)]\right)+d_{2}[1-b d(1-\alpha)]= \\
=-d_{2}+d d_{1}+d d_{2}[b(1-\alpha)]+d_{2}-d_{2} b d(1-\alpha)= \\
=d d_{1}+d d_{2}[b(1-\alpha)]-d_{2} b d(1-\alpha)=
\end{gathered}
$$

$$
\begin{gathered}
=d d_{1}+b d d_{2}(1-\alpha)-d_{2} b d(1-\alpha)=d d_{1} \\
f_{p_{2}}^{\prime}(\tilde{p})=-d_{1}+\left(\frac{d_{1}+d_{2}[b(1-\alpha)]}{1-[b d(1-\alpha)]}\right)[1-b d(1-\alpha)]=-d_{1}+d_{1}+d_{2}[b(1-\alpha)] \\
=d_{2}[b(1-\alpha)]=d_{2} b(1-\alpha) \\
f_{p_{1}}^{\prime}(\hat{p})=-d_{2}+\left(\frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}\right)[1-b d(1-\alpha)]=-d_{2}+d_{2}+d(1-\alpha) d_{1} \\
=d d_{1}(1-\alpha) \\
f_{p_{2}}^{\prime}(\hat{p})=-d_{1}+\left(b \frac{d_{2}+d(1-\alpha) d_{1}}{[1-b d(1-\alpha)]}+d_{1}\right)[1-b d(1-\alpha)]= \\
=-d_{1}+b\left(d_{2}+d(1-\alpha) d_{1}\right)+d_{1}[1-b d(1-\alpha)]= \\
=-d_{1}+b d_{2}+d b(1-\alpha) d_{1}+d_{1}-d_{1} b d(1-\alpha) \\
=b d_{2}
\end{gathered}
$$

Now we need to find out what is $\max \left(-\frac{f_{p_{1}}^{\prime}(\tilde{p})}{f_{p_{2}}^{\prime}(\tilde{p})},-\frac{f_{p_{1}}^{\prime}(\hat{p})}{f_{p_{2}}^{\prime}(\hat{p})}\right)$

$$
\begin{gathered}
-\frac{f_{p_{1}}^{\prime}(\hat{p})}{f_{p_{2}}^{\prime}(\hat{p})}+\frac{f_{p_{1}}^{\prime}(\tilde{p})}{f_{p_{2}}^{\prime}(\tilde{p})}=-\frac{d d_{1}(1-\alpha)}{b d_{2}}+\frac{d d_{1}}{d_{2} b(1-\alpha)}=\frac{d d_{1}-d d_{1}(1-\alpha)^{2}}{d_{2} b(1-\alpha)} \\
=\frac{d d_{1}\left(1-(1-\alpha)^{2}\right)}{d_{2} b(1-\alpha)}>0 \rightarrow-\frac{f_{p_{1}}^{\prime}(\hat{p})}{f_{p_{2}}^{\prime}(\hat{p})}>-\frac{f_{p_{1}}^{\prime}(\tilde{p})}{f_{p_{2}}^{\prime}(\tilde{p})}
\end{gathered}
$$

Now after rewriting the inequality (28) we will get:

$$
\begin{equation*}
-\frac{d d_{1}}{d_{2} b(1-\alpha)} \leq-\frac{c_{1}}{c_{2}} \leq-\frac{d d_{1}(1-\alpha)}{b d_{2}} \tag{29}
\end{equation*}
$$

If the inequality (29) is satisfied then the solution can be found in case 2 , otherwise the solution will be found in one of the other cases.

To get the solution we have to solve these equations:

$$
\left\{\begin{array}{r}
-\frac{c_{1}}{c_{2}}=-\frac{f_{p_{1}}^{\prime}(p)}{f_{p_{2}}^{\prime}(p)} \\
f(p)=d_{1} d_{2}-d_{1} p_{2}-d_{2} p_{1}+p_{1} p_{2}[1-b d(1-\alpha)]=0 \tag{31}\\
f_{p_{1}}^{\prime}(p)=-d_{2}+p_{2}[1-b d(1-\alpha)] \\
f_{p_{2}}^{\prime}(p)=-d_{1}+p_{1}[1-b d(1-\alpha)]
\end{array}\right.
$$

The solutions are:

$$
\left.\begin{array}{l}
\left(p_{1_{1}}, p_{1_{2}}\right)=\left(-\frac{c_{1} d_{1}+c_{2} \sqrt{\frac{(1-\alpha) b d d_{1} d_{2} c_{1}}{c_{2}}}}{c_{1}[b d(1-\alpha)-1]},-\frac{d_{2}+\sqrt{\frac{(1-\alpha) b d d_{1} d_{2} c_{1}}{c_{2}}}}{b d(1-\alpha)-1}\right.
\end{array}\right)
$$

Example 1:

Let's take a look on the example parameters:

$$
d_{1}=d_{2}=1, \alpha=0.7, b=1, d=1.01, c_{1}=0.8, c_{2}=0.9
$$

The conditions we demand for the solution to be in this case are:

$$
\left\{\begin{array}{c}
b d \geq 0 \\
1-b d(1-\alpha)>0 \\
-\frac{d d_{1}}{d_{2} b(1-\alpha)} \leq-\frac{c_{1}}{c_{2}} \leq-\frac{d d_{1}(1-\alpha)}{b d_{2}}
\end{array}\right.
$$

We will verify it:

$$
\begin{gathered}
b d \geq 0 \rightarrow 1 * 1.01=1.01>1 \\
1-b d(1-\alpha)>0 \rightarrow 1-1 * 1.01 * 0.3=0.697>0 \\
-\frac{d d_{1}}{d_{2} b(1-\alpha)} \leq-\frac{c_{1}}{c_{2}} \leq-\frac{d d_{1}(1-\alpha)}{b d_{2}} \rightarrow-\frac{1.01}{0.3} \leq-\frac{0.8}{0.9} \leq-\frac{0.303}{1} \rightarrow \\
-3.3667 \leq-0.8889 \leq-0.303
\end{gathered}
$$

All the conditions are satisfied.
In figure 8 you can see the line $\mathrm{f}(p)=0$, the red and blue circles are points which belongs to S_{2}

Figure 8, The red and blue circles are points which belongs to $\mathbf{S 2}$ and on the line $f(p)=0$
The green line is the probability function and the red and blue points are possible soultion in which the probability is higer then 0.3.

Now we will add to the figure the conditions for case 2 :

$$
\left\{\begin{array}{l}
p_{1}=b p_{2}+d_{1} \\
p_{2}=d p+d_{2}
\end{array}\right.
$$

In figure 9 you can see the line $\mathrm{f}(p)=0$, the red and blue circles are points which belongs to S_{2} and the lines which creates S_{2}

Figure 9, The red and blue circles are points which belongs to $S 2$ and on the line $f(p)=0$
The black line is the condition $p_{2}=d p+d_{2}$ and the red line is the condition $p_{1}=$ $b p_{2}+d_{1}$.

In figure 10 we are zooming in to the intercating zone between the line $\mathrm{f}(p)=0$ and the condition set S_{2} :

Figure 10 , The red and blue circles are points which belongs to $S 2$ and on the line $f(p)=0$
The soultion we can calcuate is :

$$
\left.\begin{array}{c}
\left(p_{1_{1}}, p_{1_{2}}\right)=\left(-\frac{c_{1} d_{1}+c_{2} \sqrt{\frac{(1-\alpha) b d d_{1} d_{2} c_{1}}{c_{2}}}}{c_{1}[b d(1-\alpha)-1]},-\frac{d_{2}+\sqrt{\frac{(1-\alpha) b d d_{1} d_{2} c_{1}}{c_{2}}}}{b d(1-\alpha)-1}\right.
\end{array}\right)=
$$

We will add the soultion to figure 10. The soultion is the point in blue in figure 11:

Figure 11, The red and blue circles are points which belongs to $S 2$ and on the line $f(p)=0$. The larger blue circle is the solution.

And finally will add the cost function and will see in figure 12 the soultion in blue , possible soultion in red and blue , intersection lines and points and the cost functioin :

Figure 12 , The red and blue circles are points which belongs to $S 2$ and on the line $f(p)=0$. The larger blue circle is the solution. The blue line is the cost function.

3.3.2 Case 2:

In this we case there is one intersection point:

$$
\begin{equation*}
\left(p_{1}, p_{2}\right)=\left(\frac{d_{2} b(1-\alpha)}{(1-d b(1-\alpha))}, d \frac{d_{2} b(1-\alpha)}{(1-d b(1-\alpha))}+d_{2}\right) \tag{32}
\end{equation*}
$$

In this case the probability function is linear therefor the solution will be in the intersection point between the probability function and the condition; the solution will be point (32).

A solution will exists in this case if the following inequality will be satisfied:

$$
-\frac{d d_{1}}{d_{2} b(1-\alpha)}>-\frac{c_{1}}{c_{2}}
$$

Example 2:

Let's take a look on the example parameters:

$$
d_{1}=d_{2}=1, \alpha=0.7, b=1, d=1.01, c_{1}=4, c_{2}=0.9
$$

The conditions we demand for the solution to be in this case are:

$$
\left\{\begin{array}{c}
b d \geq 1 \\
1-b d(1-\alpha)>0 \\
-\frac{d d_{1}}{d_{2} b(1-\alpha)}>-\frac{c_{1}}{c_{2}}
\end{array}\right.
$$

We will verify it:

$$
\begin{gathered}
b d \geq 1 \rightarrow 1 * 1.01=1.01>1 \\
1-b d(1-\alpha)>0 \rightarrow 1-1 * 1.01 * 0.3=0.697>0 \\
-\frac{d d_{1}}{d_{2} b(1-\alpha)}>-\frac{c_{1}}{c_{2}} \rightarrow-\frac{1.01}{0.3}>-\frac{4}{0.9} \\
-3.3667>4.4444
\end{gathered}
$$

All the conditions are satisfied.
In figure 13 you can see the line $f_{3}(p)=0$ and the condition set S_{3} :

Figure 13 , The red and blue circles are points which belongs to $S 3$ and on the line $f(p)=0$. The larger red circle is the solution.

The big red point is the solution. The small red and blur points are other possible solutions.

In figure 14 you can see the cost function with the line $f_{3}(p)=0$ and the condition set S_{3} :

Figure 14 , The red and blue circles are points which belongs to $S 3$ and on the line $f(p)=0$. The larger red circle is the solution. The blue line is the cost function.

3.3.3 Case 3:

In this we case there is one intersection point:

$$
\begin{equation*}
\left(p_{1}, p_{2}\right)=\left(b \frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}+d_{1}, \frac{d d_{1}(1-\alpha)+d_{2}}{(1-d b(1-\alpha))}\right) \tag{33}
\end{equation*}
$$

In this case the probability function is linear therefor the solution will be in the intersection point between the probability function and the condition; the solution will be point (33).

A solution will exists in this case if the following inequality will be satisfied:

$$
-\frac{c_{1}}{c_{2}}>-\frac{d d_{1}(1-\alpha)}{b d_{2}}
$$

Example:

Let's take a look on the example parameters:

$$
d_{1}=d_{2}=1, \alpha=0.7, b=1, d=1.01, c_{1}=0.8, c_{2}=4
$$

The conditions we demand for the solution to be in this case are:

$$
\left\{\begin{array}{c}
b d \geq 1 \\
1-b d(1-\alpha)>0 \\
-\frac{c_{1}}{c_{2}}>-\frac{d d_{1}(1-\alpha)}{b d_{2}}
\end{array}\right.
$$

We will verify it:

$$
\begin{gathered}
b d \geq 0 \rightarrow 1 * 1.01=1.01>1 \\
1-b d(1-\alpha)>0 \rightarrow 1-1 * 1.01 * 0.3=0.697>0 \\
-\frac{0.8}{4}>-\frac{0.303}{1} \rightarrow-0.2>-0.303
\end{gathered}
$$

All the conditions are satisfied.
In figure 15 you can see the line $f_{4}(p)=0$ and the condition set S_{4} :

Figure 15, The red and blue circles are points which belongs to S4 and on the line $f(p)=0$. The larger red circle is the solution.

The big red point is the solution. The small red and blur points are other possible solutions.

In figure 16 you can see the cost function with the line $f_{4}(p)=0$ and the condition set S_{4} :

Figure 16 , The red and blue circles are points which belongs to $S 4$ and on the line $f(p)=0$. The larger red circle is the solution. The blue line is the cost function.

4. Conclusions and future work

In this project we showed that even if the number of units produced by sector Si to produce one unit of sector Sj is a random variable the minimization problem for stochastic input-output model can be solved, under some assumptions.

If the random variables have known distribution function the probability function can be calculated and the minimization problem can be solved.

In this project we examined only specific case where the random variables are uniform distributed random variables, but more study can be done when other or mixed distribution functions are used.

In addition in this project we selected the number of products to be 2, more work can be done on a different number of products.

Appendix: MATLAB programs

1. Experimental_testing_1_a.m used in page 9 :

```
function [result] =experimental_testing_1_a(option)
b=1;
d1=1;
d2=1;
d=1.01;
Greater = 0;
Less=0;
if(option == 1)
    p1 = 0.5;
    p2=0.9;
    calc_prob =0
    a1=b*p2+d1;
    a2=d*p1+d2;
    if((p1<d1) && (p2<d2))
        test = fprintf('Good\n');
    end
elseif (option == 2)
    p1 = 1.5;
    p2=1.9;
    calc_prob =((-d1+p1)/(p2*b))*((-d2+p2)/(p1*d))
    a1=b*p2+d1;
    a2=d*p1+d2;
    if((p1>=d1) && (p2>=d2) && (p1<=a1) && (p2<=a2))
        test = fprintf('Good\n');
    end
elseif (option == 3)
    p1 = 1.5;
    p2=5;
    calc_prob =((-d1+p1)/(p2*b))
    a1=b*p2+d1;
    a2=d*p1+d2;
    if((p1>=d1) && (p1<=a1) && (p2>a2))
        test = fprintf('Good\n');
    end
elseif(option ==4)
    p1 = 5;
    p2=1.5;
    calc_prob =((-d2+p2)/(p1*d))
    a1=b*p2+d1;
    a2=d*p1+d2;
    if( (p2>=d2) && (p1>a1)&& (p2<=a2))
        test = fprintf('Good\n');
    end
end
%100000000
for I=1:100000000
    m12 = rand(1)*b;
    m21 = rand(1)*d;
    cond1 = p1-m12*p2;
```

```
    cond2 = p2-m21*p1;
    if ((cond1>=d1) && (cond2>=d2))
        Greater=Greater+1;
    else
        Less = Less+1;
    end
end
real_prob = Greater/(Greater+Less)
result = real_prob-calc_prob;
```

2. Experimental_testing_1_b.m used in page 13
```
function [result] =experimental_testing_1_b(option)
```

$\mathrm{b}=1$;
d1=1;
d2=1;
$\mathrm{d}=1.01$;
Greater $=0$;
Less=0;
$\% \mathrm{p} 1=3.5$;
p2=10;
result=0;
\%1-bd(1-a)=0 -> 1-bd+abd=0-> abd=1-bd -> a= (bd-1)/bd
if (option == 1)
$a=(b * d-1) /\left(b^{*} d\right) ;$
elseif (option $==2$)
$\mathrm{a}=0.2$;
\%a=0.5;
\%a=0.1;
else
$\mathrm{a}=0.0096$;
end
$e=1-b^{*} d^{*}(1-a)$
$\mathrm{p} 1 _$req $=(\mathrm{d} 1 * \mathrm{~d} 2 *(1-\mathrm{e}) * \mathrm{~b} * \mathrm{p} 2 * \mathrm{~d} 2 * \mathrm{e}) /\left(\mathrm{e}^{*}(\mathrm{~b} * \mathrm{p} 2 * \mathrm{~d}+\mathrm{d} 1 * \mathrm{~d})\right)$
\%100000000
for $\mathrm{I}=1$: 100000000
p1_req $=(\mathrm{d} 2 * \mathrm{~d} 1 *(1-\mathrm{e})) /\left(\mathrm{e}^{*} \mathrm{~d} *(\mathrm{p} 2+\mathrm{d} 1)\right)$;
\%p1=rand(1)*(b*p2+d1-p1_req)+p1_req
$\mathrm{a} 1=\mathrm{b} * \mathrm{p} 2+\mathrm{d} 1$;
$\mathrm{p} 1=\mathrm{rand}(1)^{*}(\mathrm{a} 1-\mathrm{d} 1)+\mathrm{d} 1$;
a2=d*p1+d2;
while $((\mathrm{p} 1<\mathrm{d} 1)\|(\mathrm{p} 2<\mathrm{d} 2)\|(\mathrm{p} 1>\mathrm{a} 1) \|(\mathrm{p} 2>\mathrm{a} 2))$
$\% \mathrm{p} 1=\mathrm{rand}(1) *\left(\mathrm{~b} * \mathrm{p} 2+\mathrm{d} 1-\mathrm{p} 1 _r e q\right)+\mathrm{p} 1 _r e q ;$
$\mathrm{a} 1=\mathrm{b}$ *p2+d1;
$\mathrm{p} 1=\mathrm{rand}(1)^{*}(\mathrm{a} 1-\mathrm{d} 1)+\mathrm{d} 1$;
$\mathrm{a} 2=\mathrm{d}$ * $\mathrm{p} 1+\mathrm{d} 2$;
end
if((p1>=d1) \&\& (p2>=d2) \&\& (p1<=a1) \&\& (p2<=a2))
result=result +1 ;
end
calc_prob $=((-\mathrm{d} 1+\mathrm{p} 1) /(\mathrm{p} 2 * \mathrm{~b})) *((-\mathrm{d} 2+\mathrm{p} 2) /(\mathrm{p} 1 * \mathrm{~d}))$;
func $=\mathrm{d} 1 * \mathrm{~d} 2-\mathrm{d} 1$ *p2-d2*p1+p1*p2*e;
if ((calc_prob >= (1-a)) || (func >=0))
Greater $=$ Greater +1 ;

```
        else
            Less=Less+1;
        end
    end
Greater
Less
sum=Greater+Less
```


3. Programs for plotting case 1:

```
function plot_h(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2)
x=min_x1:0.1:max_x1;
size1=size(x,2);
for I=1:size1
    y(I) = (d1*d2-d2*x(I))/(d1-x(I)*(1-a*b*d));
    y_3(I) = (x(I)-d1)/b;
    y_5(I) = d*x(I)+d2;
    con1(I) = d1;
    con2(I) = d2;
end
y1 = (d2+d*a*d1)/(1-b*d*a);
x1 = b*y1+d1;
x2 = (d1+d2*b*a)/(1-b*d*a);
y2 = d*x2+d2;
hold on;
plot(x,y,'-g');
plot(x,y_3,'-r');
plot(x,y_5,'-k');
yL = get(gca,'YLim');
%line([d1 d1],yL,'Color','r');
%plot(x,con2,'-k');
%plot(x1,y1,'or','MarkerSize',14)
%plot(x2,y2,'or','MarkerSize',14)
%legend('f(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2','p_1=d_1','p_2=d_2');
legend('f(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2');
function plot_option_2(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2)
[X,Y] = meshgrid(min_x1:0.01:max_x1,min_x2:0.01:max_x2);
x = min_x1:0.001:max_x1;
y=min_x2:0.001:max_x2;
size1=size(X,1);
size2=size(X,2);
size3 = size(x,2);
size4 = size(y,2);
min_prob=-1;
min_x=-1;
min_y=-1;
min_func=-1;
max_prob = -1;
for I=1:size3
    x2 = (d1*d2-d2*x(I))/(d1-x(I)*(1-a*b*d));
    if x2>=d2 && x2<=(d*x(I)+d2) && d1<=x(I) && x(I)<=(b*x2+d1)
        [prob]=secoundprob(x(I),x2,d1,d2,b,d);
    else
```

```
        prob=0;
    end
    if (prob > max_prob)
        max_prob = prob;
    end
    if(prob >=a)
        plot(x(I),x2,'o','MarkerSize',8);
        hold on;
        func = c1*x}(\textrm{I})+\textrm{c}2*x2
        if(min_func==-1)
            min_prob=prob;
            min_func=func;
            min_x=x(I);
            min_y=x2;
        elseif func<min_func
            min_func=func;
            min_prob=prob;
            min_x=x(I);
            min_y=x2;
        end
    end
end
for I=1:size4
    x1 = (d1*d2-d1*y(I))/(d2-y(I)*(1-a*b*d));
    if d1<=x1 && x 1<=(b*y(I)+d1) && y(I)>=d2 && y(I)<=(d*x1+d2)
        [prob]=secoundprob(x1,y(I),d1,d2,b,d);
    else
        prob=0;
    end
    if (prob > max_prob)
        max_prob = prob;
    end
    if(prob >=a)
        plot(x1,y(I),'or','MarkerSize',8);
        hold on;
        func = c1*x1+c2*y(I);
        if(min_func==-1)
            min_prob=prob;
            min_func=func;
            min_x=x1;
            min_y=y(I);
        elseif func<min_func
            min_func=func;
            min_prob=prob;
            min_x=x1;
            min_y=y(I);
        end
    end
end
w=1-a*b*d;
item1 = -c1* * w * (1-d1)+2*d2*W*c2;
item2=c1^2* (\mp@subsup{W}{}{\wedge}2*(1-d1)^2+4* c2^2* W^2*d2*(d2-1)+d*c1*c2* W^2*(1-d1+d1*d2*(1-w));
```

```
item3 = 2* W^^2*c2;
sol1_x2 = -(d2 + ((a*b*c1*d*d1*d2)/c2)^(1/2))/(a*b*d - 1);
sol2_x2 = -(d2 - ((a*b*c 1*d*d1*d2)/c2)^(1/2))/(a*b*d - 1);
sol1_x1= -(c1*d1 + c2*((a*b*c1*d*d1*d2)/c2)^(1/2))/(c1*(a*b*d - 1));
sol2_x1=-(c1*d1 - c2*((a*b*c1*d*d1*d2)/c2)^(1/2))/(c1*(a*b*d - 1));
[prob]=secoundprob(sol1_x1,sol1_x2,d1,d2,b,d);
check_x_option(sol1_x1,sol1_x2,d1,d2,b,d);
%[prob]=secoundprob(sol2_x1,sol2_x2,d1,d2,b,d)
%check_x_option(sol2_x1,sol2_x2,d1,d2,b,d)
func = c1*sol1_x1+c2*sol1_x2;
func = c1*min_x+c2*min_y;
hold on;
plot(sol1_x1,sol1_x2,'ob','MarkerSize',14)
hold on;
%plot(min_x,min_y,'or','MarkerSize',14)
plot_c1_c2(d1,d2,max_x1,max_x2,c1,c2,sol1_x1,sol1_x2);
fprintf('min_prob-%d,min_x-%d,min_y-%d,func-%d,max_prob-%d\nsol1_x1-%d,sol1_x2-
%d\nsol2_x1-%d,sol2_x2-
%d\n',min_prob,min_x,min_y,func,max_prob,sol1_x1,sol1_x2,sol2_x1,sol2_x2);
```


4. Programs for plotting case 2 :

function plot_option_3(min_x1,min_x2, max_x1, max_x2,a,b,d,d1,d2,c1,c2)
$\mathrm{x}=\min _{-} \mathrm{x} 1: 0.01: \max _{-} \mathrm{x} 1$;
size1 $=\operatorname{size}(x, 2)$;
for $\mathrm{I}=1$: size 1

```
y(I) = (-d1+x(I))/(a*b);
y1(I) = (x(I)-d2)/(a*b);
y2(I) = d*x(I)+d2;
```

end
hold on;
plot(x,y,'-g',x,y $1,{ }^{\prime}-\mathrm{r}$ ', x, y2,'-b');
legend('f_3(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2');
function plot_option_3_con_test(min_x1, min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2)
$\mathrm{x}=\min _\mathrm{x} 1: 0.1:$ max_x 2;
$y=\min _{-}$x2:0.1:max_x2;
size3 $=\operatorname{size}(x, 2)$;
size4 $=\operatorname{size}(\mathrm{y}, 2)$;
min_prob=-1;
min_x=-1;
min_y=-1;
min_func=-1;
max_prob $=-1$;
hold on;
for $\mathrm{I}=1$:size 3
$\mathrm{x} 2=(-\mathrm{d} 1+\mathrm{x}(\mathrm{I})) /(\mathrm{a} * \mathrm{~b})$;
if $a^{*} x 2+d 1-x(I)<=0 \& \& x(I)-((x 2-d 2) / d)<0$
[prob]=secoundprob(x(I),x2,d1,d2,b,d);
else prob=0;
end
if (prob > max_prob)
max_prob = prob;
end

```
    if(prob >=a)
            plot(x(I),x2,'ob','MarkerSize',8);
            hold on;
            func = c1*x}(\textrm{I})+\textrm{c}2*x2
            if(min_func==-1)
                min_prob=prob;
                min_func=func;
                min_x=x(I);
                min_y=x2;
            elseif func<min_func
                min_func=func;
                min_prob=prob;
                min_x=x(I);
                min_y=x2;
            end
        end
end
for I=1:size4
    x1 = a*y(I)*b+d1;
    if a*y(I)+d1-x1<=0 && x1-((y(I)-d2)/d)<0
            [prob]=secoundprob(x1,y(I),d1,d2,b,d);
    else
            prob=0;
    end
    if (prob > max_prob)
            max_prob = prob;
    end
    if(prob >=a)
            plot(x1,y(I),'ob','MarkerSize',8);
            hold on;
            func = c1*x }1+\textrm{c}2*\textrm{y}(\textrm{I})
            if(min_func==-1)
            min_prob=prob;
            min_func=func;
            min_x=x1;
            min_y=y(I);
            elseif func<min_func
            min_func=func;
            min_prob=prob;
            min_x=x1;
            min_y=y(I);
        end
    end
end
func = c1*min_x+c2*min_y;
fprintf('min_prob-%d,min_x-%d,min_y-%d,func-%d,max_prob-
%d\n',min_prob,min_x,min_y,func,max_prob);
```


5. Programs for plotting case 3:

```
function plot_option_4(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2)
x = min_x1:0.01:max_x1;
size1 = size(x,2);
for I=1:sizel
    y(I) = a*x(I)*d+d2;
    y1(I)=(x(I)-d1)/d;
    y2(I)=d*x(I)+d2;
end
hold on;
plot(x,y,'-g',x,y1,'-r',x,y2,'-b');
legend('f_4(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2');
function plot_option_4_con_new(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2)
x = min_x1:0.1:max_x1;
y=min_x2:0.1:max_x2;
size3 = size(x,2);
size4 = size(y,2);
min_prob=-1;
min_x=-1;
min_y=-1;
min_func=-1;
max_prob = -1;
hold on;
for I=1:size3
    x2 = a*x (I)*d+d2;
    if x2>=d2 && x2<=(d*x(I)+d2) && x(I)>(b*x2+d1)
        [prob]=secoundprob(x(I),x2,d1,d2,b,d);
    else
        prob=0;
    end
        if (prob > max_prob)
        max_prob = prob;
    end
        if(prob >=a)
        plot(x(I),x2,'o','MarkerSize',8);
        hold on;
        func = c1*x}(\textrm{I})+\textrm{c}2*\textrm{x}2
        if(min_func==-1)
            min_prob=prob;
            min_func=func;
            min_x=x(I);
            min_y=x2;
        elseif func<min_func
            min_func=func;
            min_prob=prob;
            min_x=x(I);
            min_y=x2;
        end
        end
end
for I=1:size4
```

```
    x1 = (y(I)-d2)/(a*d);
    if y(I)>=d2 && y(I)<=(d*x1+d2) && x 1>(b*y(I)+d1)
        [prob]=secoundprob(x1,y(I),d1,d2,b,d);
    else
        prob=0;
    end
    if (prob > max_prob)
        max_prob = prob;
    end
    if(prob >=a)
        plot(x1,y(I),'or','MarkerSize',8);
        hold on;
        func = c1*x1+c2*y(I);
        if(min_func==-1)
            min_prob=prob;
            min_func=func;
            min_x=x1;
            min_y=y(I);
        elseif func<min_func
            min_func=func;
            min_prob=prob;
            min_x=x1;
            min_y=y(I);
        end
    end
end
func = c1*min_x+c2*min_y;
fprintf('min_prob-%d,min_x-%d,min_y-%d,func-%d,max_prob-
%d\n',min_prob,min_x,min_y,func,max_prob);
```

