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1. Introduction 

Basic Input-output model: 

The input – output model is trying to solve the question: 

“What level of output should each of the n industries in an economy produce, in order 

to satisfy the total demand for that product?” 

 

 Professor Wassily Leontief developed the input – output model in the 1930’s. The 

model is a method to analyze the relationships between different sectors in the 

economy. In order to produce a product each sector may need to use its own products 

or other sectors products. With the input-output model one can find the outputs 

products number of a sector in order to satisfy the total demand. 

 On October 18 in 1973, Wassily Leontief won Nobel Prize in economy for his work 

in this area.    

 

Input-output model assumption: 
1. Each sector produces one product. 

2. Each sector uses a fixed input ratio for the production of its product. 

 

Using of Linear Algebra for the Model: 
We will use basic Linear Algebra to describe and solve the model. 

We will assume that there are n independent sectors: S1,S2,…..,Sn 

Let mij be the number of units produced by sector Si to produce one unit of sector Sj. 

Let pi be number of units produced by sector Si. 

Then the value mijpj is the number of units produced by sector Si and consumed by 

sector Sj. 

Let di be the demand for product i outside the industry. 

Assuming that the production of each sector is completely consumed , the total 

number of units produced by sector i will be : 

                                          (1) 

     

The equations for all n sectors are: 

{
 
 

 
 

                         

                         

 
                                 

 
                         

                                (2) 

or in a matrix form: 

                (3) 

where: 

  (

          

   

 
   

 

    

  
      

    

)     (

  

  

 
  

)     (

  

  

 
  

)   (4) 
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Matrix C is called input-output matrix or consumption matrix. The consumption 

matrix C shows the quantity of inputs needed to produce one unit of a good. The rows 

of the matrix represent the producing sector of the economy. The columns of the 

matrix represent the consuming sector of the economy. The entry mij in consumption 

matrix represent what percent of the total production value of sector j is spent on 

products from sector i. Demand vector d represents demand from the non-producing 

sector of the economy. Vector p represents the total amount of the product produced. 

 

Solution of the equation: 
              (   )      (   )       (5) 

 

Assumptions: 

 Consumption matrix C and demand vector d have nonnegative entries 

 The inverse of the matrix (I-C) exists 

 The production vector p has nonnegative entries and has unique solution for 

the model 

Definition: Consumption matrix C can be called economically feasible if the inverse 

of the matrix (I-C) exists. 

 

Example: 

Let's consider an economy with two products, A and B. The demand for them is 

  ( 
 
) in order to create one A unit we need 0.2 units of B and to create one B unit 

we need 0.4 units of A.  The Consumption matrix is: 

  (
    
    

) 

The solution can be found with equation  ( ) : 

(   )   (
     

     
)  (   )   (

           
            

)    (   )    

(
           
            

) (
 
 
)  (

      
      

)   

In this case the inverse matrix (   )    exists, so Matrix C is economically feasible. 

Minimum problem with input – output model 

In real life section owners will want not only to solve the input-output problem, but 

also desire to minimize the costs function and to maximize profits. 

Let’s assume that for each product the cost to produce is ci and the price in the market 

it Pi. Then the profit maximization problem will be: 

    [∑ (     )  
 
   ] 

If we will assume that the price in the market for each product is fixed then we can 

solve the production cost minimization problem instead: 
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   [∑     
 
   ]         (6) 

2. Problem Statement 

2.1 Stochastic Input Output model 

The objective of this project is studying the stochastic version if the input-output 

model. 

The main idea will be the same, but instead of known / fixed coefficients on matrix C. 

we will assume they are stochastic variables with a known distribution. 

We will assume that there are n independent sectors: S1,S2,…..,Sn 

Let mij be the number of produced units by sector Si to produce one unit of sector Sj , 

but now mij is a stochastic variable with a known distribution. 

Let pi be the number of units produced by sector Si. 

Then the value mijpj is the number of units produced by sector Si and consumed by 

sector Sj. 

Let di be the demand for product i outside the industry. 

Then the total number of units produced by sector i are: 

                                            (7) 

The equation for all n sectors will be: 

{
 
 

 
 

                         

                         

 
                                 

 
                         

     (8) 

Or in a matrix form:  

                  (9) 

Where: 

  (

          

   

 
   

 

    

  
      

    

)     (

  

  

 
  

)     (

  

  

 
  

)                    (10) 

Now we can’t calculate the inverse matrix to find the solution, instead we can search 

for a solution which will solve the equation with a probability above a specific 

number. 

In this paper we will describe and solve the Stochastic Input Output in a specific case. 
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2.2 Minimum problem with stochastic input – output model 

In the stochastic input – output model the costs to produce one unit are not known or 

fixed. They are stochastic variables with a known distribution. 

The costs can be represented as a vector: 

  (

  
  
 
  

) , ci is the cost for producing one unit of pi. 

Now the problem is formatted as follows: 

                   (11) 

subject to: 

 (      )                       (12) 

where   is a probability,       

3 Solution of minimization problem for stochastic input-output 

model 

In this project we study the following particular case of the problem. 

Our assumptions are: 

    

           [   ]            [   ] 

Where    [     ] means that X is a uniform distributed random variable on [     ] 

The assumptions               mean that for the production of product pi there 

is no need for the same product. 

In such case the matrices are: 

  (
    

    
)     (

  

  
)     (

  

  
)       (13) 

The corresponding equations are: 

{
           

           
 {

           

           
                 (14) 

Since m12 , m21 are stochastic variables we can't solve the problem directly , but we 

can search for p1 , p2 which will solve the problem with specific probability, 

 (                       )      ,              (15) 
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where   is a small probability       

3.1 Calculation of probability functions 

The probability function for uniform stochastic variable    [   ] is: 

 (   )   ( )  {

     
 

 
      

     

 

Therefore: 

 (           )   (      
     

 
)   (     

    
 

 
 

) 

 

{
 
 

 
     

     

  
   

 
     

  

 
    

     

  
  

   
     

  
  

 

{
 
 

 
     

     

  
   

      

   
    

     

  
  

   
     

  
  

              (16) 

 

Similarly:  

 (           )   (      
     

 
)   (     

    
 

 
 

) 

 

{
 
 

 
     

     

  
   

 
     

  

 
    

     

  
  

   
     

  
  

 

{
 
 

 
     

     

  
   

      

   
    

     

  
  

   
     

  
  

              (17) 

Now we will calculate  (           )  (           ) 

 (           ) (           )   

{
 
 
 
 
 

 
 
 
 
                                                

    
 

 
 

       
    

 

 
 

   

     
 

 
 
 

 
     

 

 
 
 

    
    

 

 
 

          
    

 

 
 

   

     
 

 
 
 

                              
    

 

 
 

        
    

 

 
 

  

     
 

 
 
 

                        
    

 

 
 

          
    

 

 
 

   

                                               
    

 

 
 

        
    

 

 
 

   

     (  ) 
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Simplification of the probability function: 

Case 1: 

 (           ) (           )     
    

 

 
 

       
    

 

 
 

    

 
    

 

 
 

                  

For the same reasons the second condition becomes: 

 
     

  
         

In conclusion the conditions to get  (           ) (           )    

are: 

                       (19) 

In this case the economy will not reach the required probability .This case is less 

interesting, so we will remove it from our studying. 

Case 2: 

 

 (           ) (           )  
     

 

 
 
 

 
     

 

 
 
 

 

   
    

 

 
 

          
    

 

 
 

   

   
     

  
                             

For the same reasons the second condition becomes: 

             

                                   (20) 

Case 3 : 

 (           ) (           )  
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From case 2 the first condition becomes: 

   
     

  
                

The second condition: 

 
     

  
                       

                                 (21) 

 

Case 4: 

 (           ) (           )  
     

 

 
 
 

 

 
    

 

 
 

            
    

 

 
 

    

 
     

  
                        

From case 2, the second condition becomes: 

             

                                (22) 

Case 5: 

 (           ) (           )     
    

 

 
 

        
    

 

 
 

    

From cases 3, 4 the conditions for the case become: 

                              (23) 

After rewriting the conditions by using (19)-(23) the probability function is: 

 (           ) (           )   
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{
 
 
 
 

 
 
 
 

                                    

     
 

 
 
 

 
     

 

 
 
 

                                          

     
 

 
 
 

                                                           

     
 

 
 
 

                                                         

                                                                     

     (  ) 

Looking again on condition (23): 

                        , if           then: 

              (      )                    

Therefore if     then the Non-equality will never be satisfied.  In this project we 

will assume that       because the case which  

 (           ) (           )        (25) 

is less interesting, eq. (20) means that the economy meets the demand and production 

on 100% of the cases. 

After rewriting the conditions and under the assumption: 

               (26) 

the probability function becomes: 

 (           ) (           )   

{
  
 

  
       

   
 
      

   
                                         (    )  

      

   
                                                                (    ) 

 
      

   
                                                             (    )

   

Experimental testing (experimental_testing_1_a.m): 

The program randomly chooses m12 , m21 , when m12 ~ U[0,b] , m21 ~[0,d] . The other 

parameters are fixed:                      and p1, p2 are chosen for every 

one of the cases. Then program runs 100000000 times for every case and sum the 

number of runs where for ransoms variables m12, m21 the following conditions are 

satisfied: 

  {
           

           
 

Then it compares it to the probability function (24). 

Results: 
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Id p1 p2 Case P based on 

(24) 

P based on 

testing 

1 0.5 0.9 (24.1) 0 0 

2 1.5 1.9 (24.2) 0.156331 0.156339 

3 1.5 5 (24.3) 0.1 0.10004 

4 5 1.5 (24.4) 0.099 0.09899 

 

Lemma 1: If     (   )    then the probability function in case 1 receive only 

negative values. 

Proof: 

The probability function and the conditions in case 1: 

 (           ) (           )  
     

 

 
 
 

 
     

 

 
 
 

      

                         

We will demand that the probability function will satisfy the following Inequality: 

 (           ) (           )  
     

 

 
 
 

 
     

 

 
 
 

     

where       . 

      

   
 
      

   
     (      )(      )        

(   )   

                          (   )     

                   [    (   )]    

Let  ( )                     [    (   )]     (28) 

    (   )     ( )                  

The conditions for case 1 are: 

                              

Therefore: 

 ( )                                        

So for every p1,p2 if     (   )    the probability function doesn't satisfy the 

condition  ( )      
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Lemma 2: if     (   )    then the probability function in case 1 can receive 

positive values. 

Proof: 

    (   )    

    (   )        (   )    

The probability function in this case is: 

 ( )                     [    (   )] 

And the conditions are: 

                              

Let   [    (   )]     .Then: 

 ( )                      

        (      )    (      )         

                                   

                  (   ) 

We demand that  

 ( )                     (   )    , but              

    (   ) is a negative number. 

 ( )                      

                (      )(      )  

       (                       ) 

     (   )  (                  )  

We found upper and lower bands for  ( ): 

    (   )  (                  )   ( )

                  (   ) 

Therefore if     (   )  (                  )    then  ( ) might be 

positive. 

    (   )  (                  )     

   (        )      (   )          

   
    (   )       

 (        )
        (29) 
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We can't calculate when  ( )     because  ( )                   (   ) 

and                   (   ) is a negative number, but we can say that 

when  

   
    (   )        

 (        )
 

then : 

 ( )    

 

Now let us show that    
    (   )       

 (        )
 therefore the condition for    stay 

      : 

   
    (   )        

 (        )
    

    (   )        

  (      )

    
    (   )        

    
 

           (   )        

    
 

           (   )                                   

     [    (   )]           [    (   )]       [    (   )]   

     [    (   )]                  (   )       [  

  (   )]       [    (   )]        (   )       [    (   )]  

     [    (   )]       [    (   )]      

Lemma 3: if     (   )    then the probability function in case 1 receive only 

negative values. 

Proof: 

    (   )    

Let    [    (   )]      then the probability function in this case is: 

 ( )                       

And the conditions are: 

                              

Therefore: 

 ( )                                           
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So for every p1,p2 if     (   )    the probability function doesn't satisfy the 

condition  ( )     

With Lemma 1, 2, 3 and other assumptions we made the conditions for a solution in 

case 1 of the probability function are: 

{
 
 

 
 

    
    (   )   

        (30) 

Experimental testing: 

The program randomly chooses p1. The other parameters are fixed:       
                    . Then program runs 100000000 times for cases I,II and 

III and checks if the probability function is equal or higher than 0 : 

Case     (   ) Number of times 

 ( )    

Number of time 

 ( )    

I 0 0 100000000 

II 0.0910 0 100000000 

II 0.1920 58267362 41732638 

II 0.4950 100000000 0 

III -0.0100 0 100000000 

III -0.0090 0 100000000 

III -0.0043 0 100000000 

III -3.0400e-004 0 100000000 

We can see that in cases I and III we always get negative values for  ( ) and in case 

II , we get mixed values. 

 

3.2 Derivation of constraints set 

3.2.1 Case 1 

Now we would like to find the intersection of the conditions in case 1 and the 

probability function in case 1. 

 The probability function in case 1 is: 

 ( )                     [    (   )] 

 ( ) is a hyperbolic function. In figure 1 you can see an example of the line  ( )  

 . 
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Figure 1 

 

The conditions in case 1 are: 

                              

Definition: 

Let    {(     )                              } 

We will find the intersection of  ( )    with the conditions defined at   : 

{

     

         

     

        

 

In figure 2 you can see an example of the intersection of the line  ( )    and   . 
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Figure 2 

Lemma 4: There is no intersection point between  ( )    and       which belongs 

to   . 

Proof: 

{
 ( )                     

[    (   )]   

     
 

 ( )                     [    (   )]

                    [    (   )]   

    
[    (   )   ]        (   )         

In    we demand       therefore (     )  (    )    .   

Lemma 5: There is an intersection point between  ( )    and            which 

belongs to   and the point is (     )  (  
 
      )  ( 

    (   )  

[    (   )]
 

   
    (   )  

[    (   )]
). 

Proof: 

{
 ( )                      [    (   )]   

         
 

1 1.5 2 2.5 3 3.5 4 4.5 5
-20

-15

-10

-5

0

5

10

15

 

 

f(p)=0

p
1
=bp

2
+d

1

p
2
=dp

1
+d

2

p
1
=d

1

p
2
=d

2



 
16 

 

 ( )               (      )  (      )  [    (   )]   

                       (   
      )[    (   )]   

               
 [    (   )]     [    (   )]   

               
 [    (   )]        (   )      

          
 [    (   )]   (   )      

  (        [    (   )]   (   )  )    

 {
 
 
                   

       
 
[    (   )]    (   )    

 

   [    (   )]        (   )    

   
      (   )  

 [    (   )]
 

    (   )  

[    (   )]
 

The intersection point     
    (   )  

[    (   )]
 is in the range: 

    (   )      And    [    (   )]    , therefore 
    (   )  

[    (   )]
    

        (  
 
   )        

 
         

 
  

(     )  (  
 
      )  ( 

    (   )  

[    (   )]
    

    (   )  

[    (   )]
)      

Lemma 6: There is no intersection point between  ( )    and       which belongs 

to   . 

Proof: 

{
 ( )                     

[    (   )]   

     
 

 ( )                     [    (   )]  ( )

                    [    (   )] 

           [    (   )] 

   (      [    (   )])         

In    we demand       therefore (     )  (    )    .   

Lemma 7: There is an intersection point between  ( )    and            which 

belongs to   and the point is 

(     )  (
     [ (   )]

  [  (   )]
   

 
   )  (

     [ (   )]

  [  (   )]
  

     [ (   )]

  [  (   )]
   ). 
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Proof: 

 

{
 ( )                     

[    (   )]   

         
 

 ( )                     [    (   )]   

       (   
   )         (   

   )[    (   )]   

          
           (  

 
      )[    (   )]   

      
      (  

 
      )[    (   )]   

      
        

 
       (  

 
      )[  (   )]   

      
   

 
  (  

 
      )[  (   )]   

      
   

 
   

 
(  

 
   )[  (   )]   

  (         (      )[  (   )])    

 {
 
 
                    

       
 
 (  

 
   )[  (   )]   

 

       
 
 (  

 
   )[  (   )]     

       
 
   

 
[  (   )]    [  (   )]     

       [  (   )]        [  (   )] 

  (   [  (   )])        [  (   )] 

   
      [  (   )]

   [  (   )]
 

     [ (   )]

  [  (   )]
 

From the same reasons as in case b, the intersection point belongs to   . 

The intersection point is 

(     )  (
     [ (   )]

  [  (   )]
   

 
   )  (

     [ (   )]

  [  (   )]
  

     [ (   )]

  [  (   )]
   )  

We found two intersection points: 

 ̂  (     )  ( 
    (   )  

[    (   )]
    

    (   )  

[    (   )]
)     (28) 

 ̃  (     )  (
     [ (   )]

  [  (   )]
  

     [ (   )]

  [  (   )]
   )     (29) 
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In figure 3 you can see the intersection of the line  ( )    and    and the two 

intersection points which were calculated. 

 

Figure 3,The red circles are the two intersection points 

 

3.2.2 Case 2 

The probability function in case 2 is 
      

   
 and we demand 

      

   
     

           (   )     
      

 (   )
      (30) 

And the conditions for case 2 are: 

                           

Definition: 

Let    {(     )                           } 

Let   ( )     
      

 (   )
 

In figure 4 you can see an example of the intersection of the line   ( )    and    
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Figure 4 

Finding the intersection points of the line   ( )    and   : 

Lemma 8: There is no intersection point between   ( )    and       which 

belongs to    . 

Proof : 

{
   

     
 

 (   )
     

 

   
      

 (   )
    

In    we demand            therefore (     )  (    )    .   

Lemma 9: There is no intersection point between   ( )    and           

which belongs to    . 

Proof : 

 

{
   

     
 

 (   )
         

 

   
     

 

 (   )
 

          

 (   )
 

   

 (   )
  

    (   )        (   )        

  (     )                
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In    we demand            therefore (    )  (    )    .   

Lemma 10: There is an intersection point between   ( )    and            

which belongs to    and the point is (     )  (
   (   )

(    (   ))
  

   (   )

(    (   ))
   ). 

 

{
   

     
 

 (   )
         

 

   
     

 

 (   )
             

 
     (   )     (   )   

       (   )     (   )       (    (   ))     (   )      

   
   (   )    

(    (   ))
             

   (   )    

(    (   ))
    

The intersection point for case 2 is: (     )  (
   (   )

(    (   ))
  

   (   )

(    (   ))
   ) (31)   

In figure 5 you can see the intersection of the line   ( )    and    and the 

intersection point which was calculated. 

 

Figure 5 
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3.2.3 Case 3 

The probability function in case 3 is
      

   
   and we demand 

      

   
       

           (   )        (   )         (32) 

And the conditions for case 3 are: 

                           

Definition: 

Let    {(     )                           } 

Let   ( )      
 
 (   )     

In figure 6 you can see an example of the intersection of the line   ( )    and    

 

Figure 6 

 

Finding the intersection points of the line   ( )    and the condition set   : 

Lemma 11: There is an intersection point between   ( )    and            

which belongs to    and the point is (     )  ( 
   (   )   

(    (   ))
    

   (   )   

(    (   ))
). 

Proof: 

{
    

 
 (   )    

         
 

    
 
 (   )     (      ) (   )      
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   (      ) (   )      

       (   )     (   )      

       (   )     (   )      

  (    (   ))     (   )      

   
   (   )    

(    (   ))
             

   (   )    

(    (   ))
      

Lemma 12: There is no intersection point between   ( )    and       which 

belongs to    . 

Proof : 

{
    

 
 (   )    

     
 

    
 
 (   )         

 
 (   )     

      

In    we demand           therefore (    )  (    )    .   

Lemma 13: There is no intersection point between   ( )    and           

which belongs to    . 

Proof : 

{
    

 
 (   )    

         
 

    
 
 (   )             

 
 (   )       

   (   )         ( (   )  )     

      

In    we demand           therefore (    )  (    )    .   

The intersection point for case 3 is: (     )  ( 
   (   )   

(    (   ))
    

   (   )   

(    (   ))
)(33) 

Example of the line     
 
 (   )      with the conditions and the intersection 

point: 

In figure 7 you can see the intersection of the line   ( )    and    and the 

intersection point which was calculated. 
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Figure 7 

3.3 Solution and examples  

Now that we have the intersection points for every case, we can find the solution for 

the minimum problem. 

The problem: 

       

Subject to: 

 (      )      

Where: 

  (
  
  

) , ci is the cost for producing one unit of pi. 

And the probability function is: 

{
 
 
 
 

 
 
 
      

 

 
 
 

 
     

 

 
 
 

                                          

     
 

 
 
 

                                                           

     
 

 
 
 

                                                         

     (  ) 

The solution will be in one of the cases:1,2,3. The case where the solution exists 

deepens on the cost coefficients. 
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Let us try to find the conditions for a solution in every one of the cases and the 

solution itself. 

 

3.3.1 Case 1: 

 In this we case there are two intersection points: 

 ̂  (     )  ( 
    (   )  

[    (   )]
    

    (   )  

[    (   )]
)     (24) 

 ̃  (     )  (
     [ (   )]

  [  (   )]
  

     [ (   )]

  [  (   )]
   )     (25) 

 

We will find the solution for the minimum problem where  

 ( )                     [    (   )]    

Proof: 

Let’s assume that the minimum solution is the point (     ) and that  (     )    

            

 ( )                     [    (   )]     

   
         

      (    (   ))
 

But , we can choose  

  
 
 

         

      (    (   ))
 

So      
 
 

            
 
          (     

 
)       

 
 
        

And this is contradiction to the fact that M is the minimum of the function.   

The solution will exists in this case if the cost coefficients and the probability function 

will have the same gradient. 

A solution (  
    

 ) will have to satisfy the condition:   

  (  
    

 )    

Lemma 14: The slope of the line  ( )    is decreasing except the jump where the 

function in not defined. 
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Proof: 
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The line  ( )    is not defined in the point: 

  
  

  

    (   )
 

It is easy to see that in the two intersection points  ̂  ̃      
    

Conclusion from Lemma 14: between the two intersection points the slope of the 

line  ( )    is decreasing and doesn’t change its direction. 

A solution will exists in this case if the following inequality will be satisfied: 

   ( 
   
 ( ̃)
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    ( 

   
 ( ̃)

   
 ( ̃)
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)     (28) 

Inequality (28) means that only if the Gradient of the cost coefficients is between 

Gradients of the probability function at the intersection points the solution can be 

found in the case otherwise the solution will be found in one of the other cases. 
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Now we need to find out what is    ( 
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Now after rewriting the inequality (28) we will get: 
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   (   )

   
       (29) 

 

If the inequality (29) is satisfied then the solution can be found in case 2 , otherwise 

the solution will be found in one of the other cases. 

To get the solution we have to solve these equations: 

{
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The solutions are: 
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Example 1: 

Let's take a look on the example parameters: 

                                       

The conditions we demand for the solution to be in this case are: 

{
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We will verify it: 
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All the conditions are satisfied. 

In figure 8 you can see the line   ( )    , the red and blue circles are points which 

belongs to    
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Figure 8, The red and blue circles are points which belongs to S2 and on the line f(p)=0 

The green line is the probability function and the red and blue points are possible 

soultion in which the probability is higer then 0.3. 

Now we will add to the figure the conditions for case 2: 

{
 
 
   

 
   

 
 
      

 

In figure 9 you can see the line   ( )    , the red and blue circles are points which 

belongs to    and the lines which creates    
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Figure 9,The red and blue circles are points which belongs to S2 and on the line f(p)=0 

The black line is the condition          and the red line is the condition    

      . 

In figure 10 we are zooming in to the intercating zone between the line   ( )    and the 

condition set   : 
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Figure 10,The red and blue circles are points which belongs to S2 and on the line f(p)=0 

The soultion we can calcuate is : 
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We will add the soultion to figure 10. The soultion is the point in blue in figure 11: 
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Figure 11, The red and blue circles are points which belongs to S2 and on the line f(p)=0. The larger blue circle 
is the solution. 

 

And finally will add the cost function and will see in figure 12 the soultion in blue , 

possible soultion in red and blue , intersection lines and points and the cost functioin : 
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Figure 12 , The red and blue circles are points which belongs to S2 and on the line f(p)=0. The larger blue  circle 
is the solution. The blue line is the cost function. 

3.3.2 Case 2: 

 In this we case there is one intersection point: 

(     )  (
   (   )

(    (   ))
  

   (   )

(    (   ))
   )      (32) 

In this case the probability function is linear therefor the solution will be in the 

intersection point between the probability function and the condition; the solution will 

be point (32). 

A solution will exists in this case if the following inequality will be satisfied: 
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Example 2: 

Let's take a look on the example parameters: 

                                     

The conditions we demand for the solution to be in this case are: 
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{
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We will verify it: 
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All the conditions are satisfied. 

In figure 13 you can see the line   ( )     and the condition set    : 

 

Figure 13 , The red and blue circles are points which belongs to S3 and on the line f(p)=0. The larger red circle is 
the solution. 

 

The big red point is the solution. The small red and blur points are other possible 

solutions. 
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In figure 14 you can see the cost function with the line   ( )     and the condition 

set   : 

 

Figure 14 , The red and blue circles are points which belongs to S3 and on the line f(p)=0. The larger red circle is 
the solution. The blue line is the cost function. 

3.3.3 Case 3: 

 In this we case there is one intersection point: 
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)     (33) 

In this case the probability function is linear therefor the solution will be in the 

intersection point between the probability function and the condition; the solution will 

be point (33). 

A solution will exists in this case if the following inequality will be satisfied: 
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Example: 

Let's take a look on the example parameters: 
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The conditions we demand for the solution to be in this case are: 

{
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We will verify it: 

                   

    (   )                         

 
   

 
  

     

 
             

 

All the conditions are satisfied. 

In figure 15 you can see the line   ( )     and the condition set    : 

 

 

Figure 15, The red and blue circles are points which belongs to S4 and on the line f(p)=0. The larger red circle is 
the solution. 
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The big red point is the solution. The small red and blur points are other possible 

solutions. 

In figure 16 you can see the cost function with the line   ( )     and the condition 

set   : 

 

Figure 16 , The red and blue circles are points which belongs to S4 and on the line f(p)=0. The larger red circle is 
the solution. The blue line is the cost function. 
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4. Conclusions and future work 

In this project we showed that even if the number of units produced by sector Si to 

produce one unit of sector Sj is a random variable the minimization problem for 

stochastic input-output model can be solved, under some assumptions. 

If the random variables have known distribution function the probability function can 

be calculated and the minimization problem can be solved. 

In this project we examined only specific case where the random variables are 

uniform distributed random variables, but more study can be done when other or 

mixed distribution functions are used. 

In addition in this project we selected the number of products to be 2, more work can 

be done on a different number of products. 
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Appendix: MATLAB programs 

1. Experimental_testing_1_a.m used in page 9 :  

function [result] =experimental_testing_1_a(option) 

b=1; 

d1=1; 

d2=1; 

d=1.01; 

Greater = 0; 

Less=0; 

if(option == 1) 

    p1 = 0.5; 

    p2= 0.9; 

    calc_prob =0 

    a1=b*p2+d1; 

    a2=d*p1+d2; 

    if((p1<d1) && (p2<d2)) 

        test = fprintf('Good\n'); 

    end 

elseif (option == 2) 

    p1 = 1.5; 

    p2=1.9; 

    calc_prob =((-d1+p1)/(p2*b))*((-d2+p2)/(p1*d)) 

    a1=b*p2+d1; 

    a2=d*p1+d2; 

    if((p1>=d1) && (p2>=d2) && (p1<=a1) && (p2<=a2)) 

        test = fprintf('Good\n'); 

    end 

elseif (option == 3) 

    p1 = 1.5; 

    p2=5; 

    calc_prob =((-d1+p1)/(p2*b)) 

    a1=b*p2+d1; 

    a2=d*p1+d2; 

    if((p1>=d1) && (p1<=a1) && (p2>a2)) 

        test = fprintf('Good\n'); 

    end 

elseif(option ==4) 

    p1 = 5; 

    p2=1.5; 

    calc_prob =((-d2+p2)/(p1*d)) 

    a1=b*p2+d1; 

    a2=d*p1+d2; 

    if( (p2>=d2) && (p1>a1) && (p2<=a2)) 

        test = fprintf('Good\n'); 

    end 

end 

%100000000 

for I=1:100000000 

    m12 = rand(1)*b; 

    m21 = rand(1)*d; 

    cond1 = p1-m12*p2; 
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    cond2 = p2-m21*p1; 

    if ((cond1>=d1) && (cond2>=d2)) 

        Greater=Greater+1; 

    else 

        Less = Less+1; 

    end 

end 

real_prob = Greater/(Greater+Less) 

result = real_prob-calc_prob; 

2. Experimental_testing_1_b.m used in page 13 

function [result] =experimental_testing_1_b(option) 

b=1; 

d1=1; 

d2=1; 

d=1.01; 

Greater = 0; 

Less=0; 

%p1 = 3.5; 

p2=10; 

result=0; 

%1-bd(1-a)=0 -> 1-bd+abd=0-> abd=1-bd -> a= (bd-1)/bd 

if (option == 1) 

    a= (b*d-1)/(b*d); 

elseif (option == 2) 

    a=0.2;      

    %a=0.5;      

    %a=0.1;      

else 

    a=0.0096; 

end 

e=1-b*d*(1-a) 

p1_req = (d1*d2*(1-e)*b*p2*d2*e)/(e*(b*p2*d+d1*d)) 

%100000000 

for I=1:100000000 

    p1_req = (d2*d1*(1-e))/(e*d*(p2+d1)); 

    %p1=rand(1)*(b*p2+d1-p1_req)+p1_req 

    a1=b*p2+d1; 

    p1=rand(1)*(a1-d1)+d1; 

    a2=d*p1+d2; 

    while (( p1 <d1) || (p2 < d2) || (p1 > a1) || (p2 >a2)) 

        %p1=rand(1)*(b*p2+d1-p1_req)+p1_req; 

        a1=b*p2+d1; 

        p1=rand(1)*(a1-d1)+d1; 

        a2=d*p1+d2; 

    end 

    if((p1>=d1) && (p2>=d2) && (p1<=a1) && (p2<=a2)) 

        result=result+1; 

    end 

    calc_prob =((-d1+p1)/(p2*b))*((-d2+p2)/(p1*d)); 

    func=d1*d2-d1*p2-d2*p1+p1*p2*e; 

    if ((calc_prob >= (1-a)) || (func >=0)) 

        Greater = Greater +1; 
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    else 

        Less=Less+1; 

    end 

end 

Greater 

Less 

sum=Greater+Less 

3. Programs for plotting case 1 : 

function plot_h(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2) 

x=min_x1:0.1:max_x1; 

size1=size(x,2); 

for I=1:size1 

    y(I) = (d1*d2-d2*x(I))/(d1-x(I)*(1-a*b*d)); 

    y_3(I) = (x(I)-d1)/b; 

    y_5(I) = d*x(I)+d2; 

    con1(I) = d1; 

    con2(I) = d2; 

end 

y1 = (d2+d*a*d1)/(1-b*d*a); 

x1 = b*y1+d1; 

x2 = (d1+d2*b*a)/(1-b*d*a); 

y2 = d*x2+d2; 

hold on; 

plot(x,y,'-g'); 

plot(x,y_3,'-r'); 

plot(x,y_5,'-k'); 

yL = get(gca,'YLim'); 

%line([d1 d1],yL,'Color','r'); 

%plot(x,con2,'-k'); 

%plot(x1,y1,'or','MarkerSize',14) 

%plot(x2,y2,'or','MarkerSize',14) 

%legend('f(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2','p_1=d_1','p_2=d_2'); 

legend('f(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2'); 

 

function plot_option_2(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2) 

[X,Y] = meshgrid(min_x1:0.01:max_x1,min_x2:0.01:max_x2); 

x = min_x1:0.001:max_x1; 

y=min_x2:0.001:max_x2; 

size1=size(X,1); 

size2=size(X,2); 

size3 = size(x,2); 

size4 = size(y,2); 

min_prob=-1; 

min_x=-1; 

min_y=-1; 

min_func=-1; 

max_prob = -1; 

for I=1:size3 

        x2 = (d1*d2-d2*x(I))/(d1-x(I)*(1-a*b*d)); 

        if x2>=d2 && x2<=(d*x(I)+d2) && d1<=x(I) && x(I)<=(b*x2+d1) 

            [prob]=secoundprob(x(I),x2,d1,d2,b,d); 

        else 
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            prob=0; 

        end 

        if (prob > max_prob) 

            max_prob = prob; 

        end 

        if(prob >=a) 

            plot(x(I),x2,'o','MarkerSize',8); 

            hold on; 

            func = c1*x(I)+c2*x2; 

            if(min_func==-1) 

                min_prob=prob; 

                min_func=func; 

                min_x=x(I); 

                min_y=x2; 

            elseif func<min_func 

                min_func=func; 

                min_prob=prob; 

                min_x=x(I); 

                min_y=x2; 

            end 

        end 

end 

for I=1:size4 

        x1 = (d1*d2-d1*y(I))/(d2-y(I)*(1-a*b*d)); 

        if d1<=x1 && x1<=(b*y(I)+d1) && y(I)>=d2 && y(I)<=(d*x1+d2) 

            [prob]=secoundprob(x1,y(I),d1,d2,b,d); 

        else 

            prob=0; 

        end 

        if (prob > max_prob) 

            max_prob = prob; 

        end 

        if(prob >=a) 

            plot(x1,y(I),'or','MarkerSize',8); 

            hold on; 

            func = c1*x1+c2*y(I); 

            if(min_func==-1) 

                min_prob=prob; 

                min_func=func; 

                min_x=x1; 

                min_y=y(I); 

            elseif func<min_func 

                min_func=func; 

                min_prob=prob; 

                min_x=x1; 

                min_y=y(I); 

            end 

        end 

end 

w=1-a*b*d; 

item1 = -c1*w*(1-d1)+2*d2*w*c2; 

item2=c1^2*w^2*(1-d1)^2+4*c2^2*w^2*d2*(d2-1)+d*c1*c2*w^2*(1-d1+d1*d2*(1-w)); 
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item3 = 2*w^2*c2; 

sol1_x2 = -(d2 + ((a*b*c1*d*d1*d2)/c2)^(1/2))/(a*b*d - 1); 

sol2_x2 =  -(d2 - ((a*b*c1*d*d1*d2)/c2)^(1/2))/(a*b*d - 1); 

sol1_x1= -(c1*d1 + c2*((a*b*c1*d*d1*d2)/c2)^(1/2))/(c1*(a*b*d - 1)); 

sol2_x1=-(c1*d1 - c2*((a*b*c1*d*d1*d2)/c2)^(1/2))/(c1*(a*b*d - 1)); 

[prob]=secoundprob(sol1_x1,sol1_x2,d1,d2,b,d); 

check_x_option(sol1_x1,sol1_x2,d1,d2,b,d); 

%[prob]=secoundprob(sol2_x1,sol2_x2,d1,d2,b,d) 

%check_x_option(sol2_x1,sol2_x2,d1,d2,b,d) 

func = c1*sol1_x1+c2*sol1_x2; 

func = c1*min_x+c2*min_y; 

hold on; 

plot(sol1_x1,sol1_x2,'ob','MarkerSize',14) 

hold on; 

%plot(min_x,min_y,'or','MarkerSize',14) 

plot_c1_c2(d1,d2,max_x1,max_x2,c1,c2,sol1_x1,sol1_x2); 

fprintf('min_prob-%d,min_x-%d,min_y-%d,func-%d,max_prob-%d\nsol1_x1-%d,sol1_x2-

%d\nsol2_x1-%d,sol2_x2-

%d\n',min_prob,min_x,min_y,func,max_prob,sol1_x1,sol1_x2,sol2_x1,sol2_x2); 

4. Programs for plotting case 2 : 

function plot_option_3(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2) 

x = min_x1:0.01:max_x1; 

size1 = size(x,2); 

for I=1:size1 

  y(I) = (-d1+x(I))/(a*b); 

  y1(I) = (x(I)-d2)/(a*b); 

  y2(I) = d*x(I)+d2; 

end 

hold on; 

plot(x,y,'-g',x,y1,'-r',x,y2,'-b'); 

legend('f_3(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2'); 

function plot_option_3_con_test(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2) 

x = min_x1:0.1:max_x1; 

y=min_x2:0.1:max_x2; 

size3 = size(x,2); 

size4 = size(y,2); 

min_prob=-1; 

min_x=-1; 

min_y=-1; 

min_func=-1; 

max_prob = -1; 

hold on; 

for I=1:size3 

        x2 = (-d1+x(I))/(a*b); 

        if a*x2+d1-x(I)<=0 && x(I)-((x2-d2)/d)<0 

            [prob]=secoundprob(x(I),x2,d1,d2,b,d); 

        else 

            prob=0; 

        end 

        if (prob > max_prob) 

            max_prob = prob; 

        end 
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        if(prob >=a) 

            plot(x(I),x2,'ob','MarkerSize',8); 

            hold on; 

            func = c1*x(I)+c2*x2; 

            if(min_func==-1) 

                min_prob=prob; 

                min_func=func; 

                min_x=x(I); 

                min_y=x2; 

            elseif func<min_func 

                min_func=func; 

                min_prob=prob; 

                min_x=x(I); 

                min_y=x2; 

            end 

        end 

end 

for I=1:size4 

        x1 = a*y(I)*b+d1; 

        if a*y(I)+d1-x1<=0 && x1-((y(I)-d2)/d)<0 

            [prob]=secoundprob(x1,y(I),d1,d2,b,d); 

        else 

            prob=0; 

        end 

        if (prob > max_prob) 

            max_prob = prob; 

        end 

        if(prob >=a) 

            plot(x1,y(I),'ob','MarkerSize',8); 

            hold on; 

            func = c1*x1+c2*y(I); 

            if(min_func==-1) 

                min_prob=prob; 

                min_func=func; 

                min_x=x1; 

                min_y=y(I); 

            elseif func<min_func 

                min_func=func; 

                min_prob=prob; 

                min_x=x1; 

                min_y=y(I); 

            end 

        end 

end 

func = c1*min_x+c2*min_y; 

fprintf('min_prob-%d,min_x-%d,min_y-%d,func-%d,max_prob-

%d\n',min_prob,min_x,min_y,func,max_prob); 
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5. Programs for plotting case 3: 

function plot_option_4(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2) 

x = min_x1:0.01:max_x1; 

size1 = size(x,2); 

for I=1:size1 

    y(I) = a*x(I)*d+d2; 

    y1(I)=(x(I)-d1)/d; 

    y2(I)=d*x(I)+d2; 

end 

hold on; 

plot(x,y,'-g',x,y1,'-r',x,y2,'-b'); 

legend('f_4(p)=0','p_1=bp_2+d_1','p_2=dp_1+d_2'); 

 

function plot_option_4_con_new(min_x1,min_x2,max_x1,max_x2,a,b,d,d1,d2,c1,c2) 

x = min_x1:0.1:max_x1; 

y=min_x2:0.1:max_x2; 

size3 = size(x,2); 

size4 = size(y,2); 

min_prob=-1; 

min_x=-1; 

min_y=-1; 

min_func=-1; 

max_prob = -1; 

hold on; 

for I=1:size3 

        x2 = a*x(I)*d+d2; 

        if x2>=d2 && x2<=(d*x(I)+d2) && x(I)>(b*x2+d1) 

            [prob]=secoundprob(x(I),x2,d1,d2,b,d); 

        else 

            prob=0; 

        end 

        if (prob > max_prob) 

            max_prob = prob; 

        end 

        if(prob >=a) 

            plot(x(I),x2,'o','MarkerSize',8); 

            hold on; 

            func = c1*x(I)+c2*x2; 

            if(min_func==-1) 

                min_prob=prob; 

                min_func=func; 

                min_x=x(I); 

                min_y=x2; 

            elseif func<min_func 

                min_func=func; 

                min_prob=prob; 

                min_x=x(I); 

                min_y=x2; 

            end 

        end 

end 

for I=1:size4 
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        x1 = (y(I)-d2)/(a*d); 

        if y(I)>=d2 && y(I)<=(d*x1+d2) && x1>(b*y(I)+d1) 

            [prob]=secoundprob(x1,y(I),d1,d2,b,d); 

        else 

            prob=0; 

        end 

        if (prob > max_prob) 

            max_prob = prob; 

        end 

        if(prob >=a) 

            plot(x1,y(I),'or','MarkerSize',8); 

            hold on; 

            func = c1*x1+c2*y(I); 

            if(min_func==-1) 

                min_prob=prob; 

                min_func=func; 

                min_x=x1; 

                min_y=y(I); 

            elseif func<min_func 

                min_func=func; 

                min_prob=prob; 

                min_x=x1; 

                min_y=y(I); 

            end 

        end 

end 

func = c1*min_x+c2*min_y; 

fprintf('min_prob-%d,min_x-%d,min_y-%d,func-%d,max_prob-

%d\n',min_prob,min_x,min_y,func,max_prob); 

 

 

     

 

 

     

     

 

 

     


