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1 Introduction

When gambling, the gambler has to decide how much of his capital to gamble in
a bet. For example, if the gambler chooses too much capital to wager in a high
risk bet, he could potentially suffer a catastrophic loss. If he bets too little in a
low risk bet, he could be missing out on growing his capital even more. Consider
a simple scenario of a gambler playing a favorable betting game which contains
a long series of bets (by favorable meaning the odds of each single bet are in the
gambler’s favor). He could, for example, just choose to bet everything he has
on each single bet in the series because the game is favorable to him. But after
playing a long series of bets, the gambler will almost surely suffer a catastrophic
failure. Therefore the gambler needs a way to manage his capital and determine
the right amount of capital to allocate to a bet which consequently also helps
him lower his risk of catastrophic failure for a series of bets.

The purpose of this paper is to present the Kelly Criterion which provides
a formula for determining how to choose a fraction of capital to wager in a bet.
The Kelly Criterion is applicable to any kind of game where a gambler has to
make a bet, for example a game can be a gamble in the stock market, a horse
race or a card game.

The Kelly Criterion was formulated by the scientist John Larry Kelly Jr.
who worked for Bell Labs in 1956. Kelly developed a method for betting in
games of roulette and blackjack and for investing in the stock market that was
based on the principles of information theory which was eventually called the
Kelly Criterion. Today the Criterion is part of mainstream investment theory.

The way the Kelly Criterion works is it maximizes what is called a utility
function. In our paper we will define utility as the long term capital growth
rate the gambler gets if he bets a specific fraction of capital in the bet. For
example, we will prove later on that the utility function of a gambler playing a
game of coin toss is a logarithmic function g(f) where f is the fraction of capital
wagered in a coin toss bet.

We will show that by maximizing the utility function the gambler can find
the optimal amount of capital to wager in the bet. This will allow him to better
manage his money. We will also show that as a consequence of using the Kelly
Criterion the gambler will lower the risk of catastrophic failure to zero.

We will first illustrate a simple and naive way of determining the optimal
fraction of betting in a game of coin toss. We will then determine the optimal
fraction of betting using the Kelly Criterion for a game of coin toss and analyze
different games that are variations of the coin toss game. Finally we will de-
scribe how to apply the Kelly Criterion to more complex games, such as Sports
Betting and the Stock Market.
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2 Binomial Games

2.1 Coin Toss

Suppose a gambler is playing a game of coin toss. The gambler tosses a coin
in the air and the coin can land on either side. The gambler has a probability
p of winning the bet and a probability q = 1− p of losing the bet. We assume
that the game is favorable to the gambler so that the coin is not a fair coin and
the odds of winning are in the gambler’s favor p − q > 0. Additionally, we are
looking at a series of coin tosses and the probability of winning does not ever
change between bets.

Xt is defined as the amount of capital a gambler holds after a series of t
bets. The gambler begins a series of N independent bets with an initial amount
of capital X0, at time t = 0, and for every bet the gambler bets a fraction of
capital defined as f ∈ [0, 1].

If the gambler wins the bet then his capital increases by X0 · f and if the
gambler loses the bet then his capital decreases by X0 · f . This type of game
is called a binomial game because the outcome of the bet is a discrete set of
outcomes, either the gambler wins a certain amount or he loses a certain amount.
For example if the gambler plays a single bet and wins then his capital is now

X1 = X0 +X0 · f = X0 · (1 + f)

and if he loses the single bet his capital is

X1 = X0 −X0 · f = X0 · (1− f)

Assume he played two bets, he won the first and lost the second. His capital is
now

X2 = X1 · (1− f) = X0 · (1 + f) · (1− f)

This type of bet has odds of 1 to 1 because the amount of capital the gambler
wins or loses every bet is only the fraction of capital he bet. The odds never
change during the series of bets played so this type of betting system is called
fixed odds betting. The fraction that is bet on every individual coin toss also
never changes and is called a fixed fraction bet.
The gambler is playing a series of N ∈ N bets with WN ∈ N the number of wins
and LN ∈ N the number of losses and WN + LN = N . Using the equation for
X2 above, we can see in a similar manner that if the gambler won WN bets and
lost LN bets then his current capital after N bets is

XN = X0 · (1 + f)WN · (1− f)LN (eq 2.1)

Now the gambler needs to decide what is the best f so he can maximize his
capital growth. To find the optimal f , which we call f∗, we will first show a
naive approach of determining f∗ by maximizing the expected value of (eq 2.1).
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2.1.1 Maximizing the expected value

WN is the amount of wins the gambler has in a series of N bets so WN is a
binomial random variable with N bets and p probability of winning, WN ∼
B(N, p). LN is the amount of losses the gambler has in a series of N bets so
LN = N − WN and LN is a random variable as well so LN ∼ B(N, 1 − p).
Because WN and LN are used in (eq 2.1) then XN is a random variable as
well. Obviously, one of the objectives of the gambler is to maximize his capital
at the end of the series of bets by using f∗ for every bet and the classic way
to accomplish that would be to maximize the expected value of the random
variable XN and use that to get f∗.
As a reminder, the formal definition of the probability distribution of a binomial
random variable with N trials and p probability X ∼ B(N, p) is

P (X = k) =

(
N

k

)
· pk · (1− p)N−k.

This is the probability of getting exactly k successes in N trials. The ex-
pected value of a random variable X with N possible values is

E[X] =
∑N

x=0 P (X = x) · x.

Using the formal definition, the expected value of the random variable XN is

E[XN ] =
∑N

w=0X0 · P (WN = w) · (1 + f)w · (1− f)N−w.

Replace the probability function P (WN = w) with the definition stated above

E[XN ] = X0 ·
∑N

w=0

(
N
w

)
pw · qN−w · (1 + f)w · (1− f)N−w

= X0 ·
∑N

w=0

(
N
w

)
· (p · (1 + f))w · (q · (1− f))N−w,

and using the binomial formula

(a+ b)N =
∑N

m=0

(
N
m

)
· am · bN−m,

we can simplify the expression to

E[XN ] = X0 · (p · (1 + f) + q · (1− f))N

= X0 · (f · (2 · p− 1) + 1)N (eq 2.2)

(eq 2.2) is a monotonically increasing function if p > 1
2

p > 1
2 → f · (2 · p− 1) + 1 > f · (2 · 12 − 1) + 1 = 1

We can clearly see above that E[XN ] is a monotonically increasing function if
p > 1

2 and a monotonically decreasing function if p < 1
2 . Using the monotonicity

and the constraint p > 1
2 , the maximum of the function is at the edge of the

interval f ∈ [0, 1] where f = 1. The value of E[XN ] at the point f = 1 is
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E[XN ] = X0 · (2 · p)N . Because the maximum is at the point f = 1 the gambler
should always bet everything he has on every bet in the series. Obviously if
he bets everything he has at each bet and the gambler wins every bet then his
capital will increase the most. The downside is that if he loses just one bet then
he loses everything. If the constraint on the probability of winning is p < 1

2
then the maximum of the function is at the point f = 0 which basically tells
the gambler not to bet. Therefore, the classic approach to calculating f∗ is not
applicable if we want to lower the risk of catastrophic failure, therefore another
way is needed to calculate f∗. Next we will be demonstrating the Kelly way of
calculating f∗ which is done by maximizing the utility function.

2.1.2 Maximizing the utility function

According to Kelly, in order to determine the f∗, what is first needed is to define
the utility function g(f) for the game the gambler is playing and then maximize
it to get f∗. The utility function must have the following properties:
• Non-linear - The utility function must be non-linear because it must have
stationary points where the marginal utility becomes zero.
• Continuous - The utility function must be defined in the interval f ∈ (0, 1)
because the gambler cannot bet less then zero capital and cannot bet more then
all his capital.
Now we will define the utility function of the coin toss game. First α is defined
as the geometric capital growth rate of a N series of bets

αN = N

√
XN

X0
, α = limN→∞αN

the natural log is applied to both sides to give

ln(αN ) =
1

N
· ln

(
XN

X0

)
(eq 2.3)

Using (eq 2.1), divide by X0

XN

X0
= (1 + f)WN · (1− f)LN

the natural log is applied to both sides

G(f) = ln

(
XN

X0

)
= WN · ln(1 + f) + LN · ln(1− f) (eq 2.4)

G(f) is the logarithmic capital growth function of N bets. Because what is
interesting is the case where N is a large number, the utility function after a
long series of bets is needed. Divide G(f) by N

1
NG(f) = 1

N · ln(XN

X0
) = WN

N · ln(1 + f) + LN

N · ln(1− f)

now using (eq 2.3)
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ln(αN ) = 1
NG(f) = 1

N · ln(XN

X0
) = WN

N · ln(1 + f) + LN

N · ln(1− f)

and with a very large N and applying the Law of Large Numbers (The law
describes the result of performing the same experiment a large number of times
with the average result being close to the expected value)

g(f) = ln(α) = limN→∞ ln(αN ) = limN→∞
1

N
ln

(
XN

X0

)
=

limN→∞
WN

N
· ln(1 + f) + limN→∞

LN

N
· ln(1− f)

= p · ln(1 + f) + q · ln(1− f) (eq 2.5)

The function g(f) is the utility function of the capital after a very large
series of bets. Figure 1 shows the graph of g(f) using different values of p: 0.55,
0.65, 0.75, 0.85, respectively.

Figure 1: graph of g(f)
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It can be seen that g(f) is non-linear and continuous in the interval (0, 1).
Now using g(f) its possible to get the optimal betting ratio, f∗.

g′(f) = p
1+f −

q
1−f = 0 −→

p− q = f(p+ q)←→ p− q = f(p+ (1− p))

f∗ = p− q = 2p− 1 (eq 2.6)
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(eq 2.6) is the critical point of the function. The next step is to prove that
f∗ is the maximum of g(f) in the interval f ∈ (0, 1). The second derivative of
g(f) is

g′′(f) =
−p

(f + 1)2
− q

(f − 1)2

g′′(f) is always negative for any f therefore f∗ is a local maximum of
the function g(f). On the boundaries the value of the utility function is:
g(f = 0) = 0 and on limf→1g(f) = −∞ (We can easily see this in figure
1). g(f) is continuous in the interval [0, 1) therefore the utility function has a
maximum value between the boundaries of the interval. The value of the util-
ity function on the local maximum is g(f = f∗) = ln(2) + p · ln(p) + q · ln(q).
Therefore the global maximum is:

• If p ≤ 1
2 then the global maximum is f = 0. This is because if p ≤ 1

2 then
f∗ = 2 · p− 1 ≤ 0.

• If p > 1
2 then the global maximum is f = f∗ (f∗ ∈ (0, 1)).

Another point of interest is the maximum geometric capital growth rate
when using f∗. Using (eq 2.5), α is

α = exp(p · ln(1 + f) + q · ln(1− f))

and after inserting f∗ into the equation

α∗ = exp(p · ln p+ q · ln q + ln 2) = 2 · pp · qq (eq 2.7)

This equation provides the maximum geometric capital growth rate when
betting using f∗.
To summarize, when playing a series of coin tosses where the odds are in the
gambler’s favor, we presented two different ways to determine how much to bet
on a single coin toss. The gambler can either bet everything he has on each
single coin toss and risk losing all his capital if he loses just once, or he can use
the Kelly Criterion and get the optimal fraction of capital to bet at every bet in
the series which helps the gambler lower his risk of catastrophic failure because
he is not betting everything he has, just a fraction of it, so he will always have a
certain amount of capital at the end of the series. Using the Kelly Criterion and
not maximizing the expected value will lower his short term gain but increase
his long term gain because he will most likely increase his capital rather then
decrease it if he plays a large number of games because of the edge he has in
the game.

After analyzing the specific case of a game with odds 1 to 1, a more general
analysis can be made of the case of a game with odds V to 1 where V ∈ [1,∞),
the difference being that if the gambler wins he gets V times his bet and if he
loses then he loses just his bet. For this case, (eq 2.1) is replaced by

XN = X0 · (1 + V · f)WN · (1− f)LN (eq 2.8)
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Before defining the utility function we need to know for what values of p is
it worth the gambler to make a bet in this type of game. Using (eq 2.2) and
modifying it for the more general case of a game of V to 1 odds the expected
value of the capital the gambler holds after N series of games is

E[XN ] = X0 · (p · (1 + V · f) + q · (1− f))N .

We assume N = 1 and check when the expected value is larger then the initial
capital

E[X1] = X0 · (p · (1 + V · f) + q · (1− f)) > X0

↔ X0 · (p+ p · V · f + q − q · f) > X0

↔ X0 · (p+ q) +X0 · f · (p · V − q) > X0

↔ X0 +X0 · f · (p · V − q) > X0

↔ 1 + f · (p · V − q) > 1

↔ f · (p · V − q) > 0

f is in the interval (0, 1) therefore

(p · V − q) > 0

After isolating p we get

p >
1

1 + V
↔ E[X1] > X0 .

This means that for any value of 1 > p > 1
1+V the expected value is positive.

If 0 < p < 1
1+V the expected value is negative meaning the gambler is losing

capital and therefore the gambler should not place a bet in the game. This
generalizes the assumption p > 0.5 made in the game of 1 to 1 odds.

The next step is to define the utility function. For this type of game it is
slightly different then before

g(f) = limN→∞ ln(α) = limN→∞
1

N
· ln

(
XN

X0

)

= p · ln(1 + V · f) + q · ln(1− f) (eq 2.9)

Figures 2 and 3 represent two graphs of g(f) for the general coin toss with values
of V: 10, 100, and the same values of p as shown in the previous figure.

10



Figure 2: graph of g(f), V = 10
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Figure 3: graph of g(f), V = 100
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Again it can be seen that g(f) is continuous in the interval (0, 1). To compute
f∗ we use the derivative of g(f)

g′(f) =
V p

1 + V · f
− q

1− f
= 0

↔ f∗ =
p · (V + 1)− 1

V
(eq 2.10)

As before, the next step is to show that f∗ is the maximum of g(f) in the
interval [0, 1). g(f) is a continuous function in the interval (0, 1) therefore it
must have a maximum in the interval or on the edges of the interval. The second
derivative of g(f) is

g′′(f) =
−q

(f − 1)2
+

−V 2 · p
(V · f + 1)2

< 0

therefore f∗ is a maximum of g(f). The next step is to prove that f∗ ∈ [0, 1].
By inserting the constraint p > 1

1+V and p < 1 into (eq 2.10) we get

f∗ >
1

V+1 · (V + 1)− 1

V
= 0

f∗ <
1 · (V + 1)− 1

V
= 1 .
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It has been proven that f∗ ∈ [0, 1]. At the edges of the interval f ∈ [0, 1)
the value of g(f) is: g(0) = 0, limf→1g(f) = −∞ therefore f∗ is the maximum
of g(f) in the interval.

Now it is possible to get the maximum geometric capital growth rate when
using f∗ in a game of odds V to 1.

α = exp(p · ln(1 + V · f) + q · ln(1− f)) = (1 + V · f)p · (1− f)q

α∗ = (p · (V + 1))p ·

(
V − p · (V + 1) + 1

V

)q

(eq 2.11)

the equation can be simplified

α∗ = (p · (V + 1))p ·

(
q · (V + 1)

V

)q

(eq 2.12)

We can summarize the coin toss game using the following points

• Betting all the capital in the gambler’s possession while playing a large se-
ries of bets, f = 1, is a risky strategy which will most likely lead to the gambler
losing everything.

• Using the Kelly approach by defining a utility or growth function and
maximizing the capital growth rate will give the gambler an optimal f which
will bring his risk of losing all his capital to zero since he is always betting a
fraction of capital and not the whole amount he holds.

• If the game is not favorable, then Kelly tells the gambler not to bet. Equa-
tions 2.7 and 2.11 cannot work if the gambler does not have an edge so they
would become negative, meaning the maximum of the utilty function is at f = 0,
which is basically saying do not bet.

• What happens if the gambler chooses to use a fraction of capital fC < f∗

or fC > f∗? If the gambler chooses the former then because f∗ is a maximum of
the function g(f) the gambler’s capital will continue to increase but at a slower
rate then if he had used f∗. This is because the function g(f) is positive in
the interval (0, f∗). If the gambler chooses the latter then his capital can either
grow at a slower rate or even decrease over time. We will see a simulation of
this case in the following section. Additionally, this conclusion can be described
differently saying: if the utility function is positive then the gamblers capital
will increase; g(f) > 0 then limN→∞XN =∞ almost surely after a long series
of bets. On the other hand, if g(f) < 0 then limN→∞XN = 0 almost surely.

2.1.3 Coin Toss Simulations

This section contains simulations that describe various scenarios of the Coin
Toss game. A gambler is playing a single game of coin toss with a biased coin
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where he has a probability of p = 0.65 of winning with odds of 1 to 1. He starts
out with an initial capital X0 = 1000 dollars. If using the Kelly Criterion then
by utilizing (eq 2.6) for choosing an optimal betting ratio the gambler will bet
f∗ = 2 ·0.65−1 = 0.3. According to Kelly the gambler should bet 30 percent of
his current capital every coin toss to make his capital increase the fastest with
zero risk. The utility function at the maximum is g(f∗) = 0.0457 and using
(eq 2.7) the geometric capital growth rate between bets is 1.0467 or 4.6 percent
geometric growth rate.

Figure 4 contains five simulations of the gambler playing N = 100 coin tosses
with the data mentioned in the game above and shows the amount of capital
the gambler holds after every bet.

Figure 4: Example 1
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It can be seen that in simulation D that at the end of the series of coin tosses
the gambler’s capital reaches a factor of almost 102 of his initial capital and for
simulations B and C the gambler’s capital reaches a peak of almost 104.5. For
simulations A and E the gambler experiences a loss of capital and at the end of
the series is below his initial capital of 103. This shows us the random variation
between different series of coin tosses where the gambler can experience losses
in some simulations and high earnings in other simulations.
The next three figures are simulations of the gambler playing N coin tosses with
the same data mentioned above and shows the amount of capital the gambler
holds after every bet. Figure 5 contains five simulations of N = 100 coin tosses
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using the betting ratio of f1 = 1. Figure 6 contains five simulations of N = 100
coin tosses using the optimal betting fraction f2 = 0.3. In addition, Figure 7 is
a logarithmic graph of the second figure.

Figure 5: Example 2
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Figure 6: Example 3
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Figure 7: Example 4
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In Figure 5 it is noticeable is that if the gambler uses the strategy of f1 = 1
then he will lose all his capital after just a few coin tosses. Using the strategy of
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f2 = 0.3 in Figures 6 and 7 has increased the gamblers capital and has brought
his risk of catastrophic failure to zero because he bets a portion of his capital
every coin toss.

Figure 8 is a simulation of a gambler playing a game of N = 10000 coin
tosses with the same data mentioned above (f = 0.3). The figure contains five
curves using the Kelly Criterion strategy.

Figure 8: Example 5
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From this figure the geometric capital growth rate can be calculated and
can be compared to see if its close to the 4.6 percent geometric growth rate
calculated using (eq 2.7). We can calculate the geometric capital growth rate
using (eq 2.3). For example, on curve A the gambler’s capital after N = 10000
coin tosses is 5.6274 · 10200

ln(αA) =
1

10000
· ln

(
5.6274 · 10200

10000

)
= 0.0453

On curve D the gambler’s capital after N = 10000 coin tosses is 1.9302 · 10200.

ln(αD) =
1

1000
· ln

(
1.9302 · 10200

1000

)
= 0.0452

The geometric capital growth rate of curve A is αA = exp(0.0453) = 1.0463
which is a 4.63 percent capital growth rate. The geometric capital growth rate
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of curve D is αD = exp(0.0452) = 1.0462 which is a 4.62 percent capital growth
rate. Both growth rates are close to the 4.6 percent calculated previously. For
smaller simulations we will get a disparity between the calculated growth rate
and the actual growth rate of the simulation.

Another point of interest is what happens if the gambler uses the Kelly
Criterion for determining f∗ but bets fC which is smaller or bigger then f∗?
Using the same data mentioned in the initial example, if the gambler uses
fC = 0.1 < f∗ = 0.3 then g(fC) = 0.0250 and α = 1.02 meaning his capi-
tal growth rate is at around 2 percent which is a lower growth rate then if he
had used f∗. If the gambler uses fC = 0.5 > f∗ = 0.3 then g(fC) = 0.0209
and α = 1.03 which is a growth rate of 3 percent meaning he will again still
experience slower capital growth.

Figures 9, 10 and 11 each contain a simulation of the gambler playing N =
1000 coin tosses again with the same data mentioned in the initial example and
shows the amount of capital the gambler holds after every bet. Each Figure
contains three curves: A, B and C, where each curve uses a different f : f1 =
0.1 < f∗, f∗ = 0.3 and f2 = 0.5 > f∗ respectively.

Figure 9: Example 6
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Figure 10: Example 7
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Figure 11: Example 8
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What is noticeable is that the best strategy for the gambler to use would be
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f∗, his capital peaks the highest out of all the other strategies in all the figures.
When using f2 > f∗ the gamblers capital grows, but not as well as it could had
the gambler used f∗. But its still very much possible for the gambler to peak
with a larger amount of capital using f2 when playing short term games, below
250 coin tosses, then he would peak using f∗, an example will be shown in the
following figures. But when using f2 his risk of losing a large amount of money
gets higher the more f2 is above f∗. This can be seen in figures 10 and 11 where
the gambler experiences a large drop in capital because of a few coin toss losses.
They clearly shows the additional risk the gambler takes when using f2 and the
less risk he takes when using f∗. This tells us that there is a trade-off between
a higher return if the gambler wins and the amount of risk he is taking so if the
gambler uses f∗ he gets a certain balance of taking a bet with a fair amount of
risk and also getting a good return of his bet if he wins.
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Figure 12: Example 9, Sample point: N = 25, f1 = 0.1, f∗ = 0.3, f2 = 0.5
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Figure 13: Example 10, Sample point: N = 250, f1 = 0.1, f∗ = 0.3, f2 = 0.5
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Figure 14: Example 11, Sample point: N = 900, f1 = 0.1, f∗ = 0.3, f2 = 0.5
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Figures 12, 13 and 14 are histograms containing H = 100 simulations of a
gambler playing N = 25, 250, 900 coin tosses with the data used in figures 9, 10
and 11.

• In a histogram figure the X axis is intervals of capital at the end of N
amount of games and the Y axis is, at the end of a simulation, how many sim-
ulations the gambler had an amount of capital that falls into a specific interval.
The simulations in each histogram end after reaching a specific number of coin
tosses.

• Histogram figure 12 shows the amount of capital the gambler had after
exactly 25 coin tosses.

• Histogram figure 13 shows the amount of capital the gambler had after
exactly 250 coin tosses.

• Histogram figure 14 shows the amount of capital the gambler had after
exactly 900 coin tosses.

We can see in figure 12 that using either strategy of f2 or f∗ would be a
good strategy for the gambler because they both yield higher earnings then us-
ing strategy f1 for a short number of coin tosses. In figure 13 we can see again
that using f2 increases the gambler’s capital and f∗ also increases his capital,
although in most of the simulations f2 increases the gamblers capital more then
any other strategy. In figure 14 we can clearly see that using f∗ would be the
best choice of strategy for the gambler because in all the simulations using f∗

the gambler’s capital increases the most then using f2. Another point of in-
terest is when using f1 < f∗ the gamblers capital grows at a steady but very
slow growth rate as compared to the other two betting fractions and that is why
using f1 is the worst strategy for the gambler.

To summarize these examples, the conclusion is that for the coin toss the
Kelly Criterion provides very easy equations for finding the f∗, can lead to a
high increase in the gamblers capital when playing a large amount of bets and
lowers the risk of losing all the capital. Another conclusion is that the gambler
can choose an f that is close to f∗ and have his capital grow in the long term,
but at a much slower growth rate then if he had used f∗. The next section
discusses different variations of the original coin toss game and how they apply
to various games in Sports Betting.

3 Sports Betting

Sports betting is the activity of predicting sports results and placing a wager
on the outcome and can include games such as Horse races and Blackjack. Just
as in the case of the coin toss, it’s possible to use the Kelly Criterion to make
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optimal bets in sports betting. The game discussed in this paper is the game of
Horse Racing.

3.1 Horse Racing

In Horse Racing a gambler can make several different types of bets. He can
bet which horse will win the race, he can bet which horse will finish in second
or third place or he can make several different bets on several different horses
simultaneously. There are many other types of bets a gambler can make but
the majority are variations of the betting types listed above. What is common
among all the different types of bets is that a gambler has to choose on which
horse/s to place his bet/s where each horse has a different probability of fin-
ishing in a certain place. In this section we will analyze the case of a gambler
betting simultaneously on all the horses in a race. The gambler will divide all
his capital on bets on all the horses and a bet on each horse is a bet that the
horse will win the race.

Suppose a gambler wants to divide all his capital on bets on three different
horses, A, B and C winning a horse race. Each horse has a different probability
of winning the race, pA, pB , pC ∈ [0, 1], and the gambler knows the probabilities
of success of each horse. Also, the fraction of capital he bets on each horse is
fA, fB , fC ∈ [0, 1], fA + fB + fC = 1. The probabilities of each horse winning
do not change between races. The odds of the game are 1 to 1. For example, if
the gambler plays a single race and horse A wins the race, then of course horses
B and C lose and the gambler’s capital is now

X1 = X0 · (1 + fA − fB − fC)

The gambler gains the amount of capital he bet on horse A and loses the amount
of capital he bet on horses B and C. Next, assume he bets on two consecutive
races, in the first race horse A won and in the second race horse C won, capital
is now

X2 = X1 · (1− fA − fB + fC) = X0 · (1 + fA − fB − fC) · (1− fA − fB + fC)

The gambler is playing a series of N ∈ N races with

• WN
A ∈ N - amount of wins for horse A,

• WN
B ∈ N - amount of wins for horse B,

• WN
C ∈ N - amount of wins for horse C,

and WN
A +WN

B +WN
C = N . Using the equation of X2 above, we can see

in a similar manner the gambler’s current capital after N bets is

XN = X0 ·(1+fA−fB−fC)WN
A

·(1−fA+fB−fC)WN
B

·(1−fA−fB +fC)WN
C

(eq 3.1)
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Now the gambler needs to decide how to optimally divide his capital for
the three bets. To accomplish this under Kelly, a utility function must first be
defined. Just as in the previous case of the coin toss, divide by X0 and apply
the natural log.

G(fA, fB , fC) = ln(XN

X0
) = WN

A · ln(1 + fA − fB − fC)+

WN
B · ln(1− fA + fB − fC) +WN

C · ln(1− fA − fB + fC)

G(f) is defined as the logarithmic capital growth function of a series of bets.
Dividing G(f) by N and using (eq 2.3)

ln(αN ) = 1
NG(f) = 1

N · ln(XN

X0
) = WN

A

N · ln(1 + fA − fB − fC) + WN
B

N

· ln(1− fA + fB − fC) + WN
C

N · ln(1− fA − fB + fC)

and with a very large N and applying the Law of Large Numbers

g(fA, fB , fC) = ln(αN ) = pA · ln(1 + fA − fB − fC) + pB · ln(1− fA + fB − fC)+

pC · ln(1− fA − fB + fC). (eq 3.2)

This equation is the utility function of the capital in a horse race after a
very large series of bets. The next step is to find the maximum. This problem
can be defined as a constrained nonlinear multi-variable optimization problem.
The optimization problem is defined as such:

Maximize: g(fA, fB , fC) = ln(α) = pA · ln(1 + fA − fB − fC)+

pB · ln(1− fA + fB − fC) + pC · ln(1− fA − fB + fC)

subject to the equality constraint: h(fA, fB , fC) = fA + fB + fC − 1 = 0 with
the lower bound constraints: fA ≥ 0, fB ≥ 0, fC ≥ 0 where g(fA, fB , fC) is the
objective function and h(fA, fB , fC) is the equality constraint.

It is possible to get the optimal betting ratios, (fA
∗fB

∗fC
∗), analytically by

inserting the equality constraint, fA = 1− fB − fC into the objective function
and converting the problem into a 2-D optimization problem.

g(fB , fC) = pA · ln(2 · (1− fB − fC)) + pB · ln(2 · fB) + pC · ln(2 · fC)

the domain of values of (fB , fC) is

∆ = (fB , fC ∈ R2 : fB + fC ≤ 1, 0 ≤ fB , 0 ≤ fC)

the graph of domain ∆ is
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Figure 15: Domain ∆
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Now to find the critical point. The partial derivatives of the function g are

gfB =
2 · pA

2 · fB + 2 · fC − 2
+
pB
fB

gfC =
2 · pA

2 · fB + 2 · fC − 2
+
pC
fC

and the critical point is
fB
∗ = pB (eq 3.3)

fC
∗ = pC (eq 3.4)

fA
∗ = pA. (eq 3.5)

We can see that the optimal betting ratios are the probabilities of each
horse winning the race. Next we need to prove that the optimal betting ratios
(fB
∗, fC

∗) are the global maximum of the function g(fB , fC).

The domain ∆ is a closed bounded domain and g(fB , fC) is continuous in
the domain except on the boundaries (fB = 1, fC = 0) and (fB = 0, fC = 1)
because limfB→1,fC=0(g(fB , fC)) = −∞ and limfC→1,fB=0(g(fB , fC)) = −∞.
Therefore the maximum of g(fB , fC) must be in ∆.
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We will define the domain that g(fB , fC) is continuous in as the domain
∆o = (fB , fC ∈ R2 : fB + fC < 1, 0 ≤ fB , 0 ≤ fC)

We need to apply the second derivative test on the critical point found to
know if the optimal betting ratios are relative maxima, relative minima or sad-
dle point.

The second derivative test tells us if a critical point is a relative maxima,
relative minima or saddle point. Let (xc, yc) be a critical point of function
f(x, y) and define

D = fxx(xc, yc) · fyy(xc, yc)− fxy2(xc, yc)

We have the following cases:

• If D > 0 and fxx(xc, yc) < 0, then f(x, y) has a relative maximum at
(xc, yc).

• If D > 0 and fxx(xc, yc) > 0, then f(x, y) has a relative minimum at
(xc, yc).

• If D < 0, then f(x, y) has a saddle point at (xc, yc).

• If D = 0, the second derivative test is inconclusive.

We apply the second derivative test

gfBfB = − 4 · pA
(2 · pB + 2 · pC − 2)

2 −
1

pB

gfCfC = − 4 · pA
(2 · pB + 2 · pC − 2)

2 −
1

pC

gfCfB = gfBfC = − 4 · pA
(2 · pB + 2 · pC − 2)

2

D = gfBfB · gfCfC − gfBfC
2 =

4 · pA
(2 · pB + 2 · pC)2 · pB

+
4 · pA

(2 · pB + 2 · pC)2 · pC
+

1

pB · pC

We can see that D > 0 and gfBfB > 0 therefore the critical point is a relative
maximum. We can also prove the relative maximum is in domain ∆o

• The first condition of the domain ∆o is met 0 ≤ fB∗

• The second condition of the domain ∆o is met 0 ≤ fC∗
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• and also fB
∗ + fC

∗ < 1

therefore the relative maximum (fB
∗, fC

∗) ∈ ∆o. The final step is to prove
the relative maxima is the global maximum. First we will find the value of the
function g(fB , fC) on the the boundary of the domain ∆ and at the relative
maxima. The edges are labeled in figure 15. We will apply the exponential
function g(fB , fC) because exp(g(fB , fC)) is continuous in the domain ∆.

exp(g(fB , fC)) = exp(pA · ln(2 · (1− fB − fC)) + pB · ln(2 · fB) + pC · ln(2 · fC))

= exp(pA · ln(2 · fA)) · exp(pB · ln(2 · fB)) · exp(pC · ln(2 · fC))

= exp(ln(2 · fA)pA) · exp(ln(2 · fB)pB ) · exp(ln(2 · fC)pA)

= (2 · fA)pA · (2 · fB)pB · (2 · fC)pC

= 2 · fpA

A · fpB

B · fpC

C

• On edge A, fB = 0 and exp(g(fB = 0, fC)) = 0.

• On edge B, fC = 0 and exp(g(fB , fC = 0)) = 0.

• On edge C, fC = 1−fB and after inserting this constraint into the original
constraint fA + fB + fC = 1 we get

fA + fB + 1− fB = 1→ fA = 0

The value of the utility function on edge C is: exp(g(fB , fC = 1− fB)) = 0.

• The value of the utility function at the relative maximum is exp(g(fB , fC)) =
2 · ppA

A · p
pB

B · p
pC

C > 0

Using Weierstrass’s Extreme Value Theorem, that states that a maximum of
a continuous function exists in a closed bounded domain, the global maximum
value of the function g(fB , fC) is on the relative maximum point. This means
that (fB

∗, fC
∗) are the maximum of the function g(fB , fC).

The following figures show the level curves and the maximum point of
g(fB , fC) using different values of (pA, pB , pC): (0.9, 0.05, 0.05), (0.1, 0.75,
0.15).
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Figure 16: level curves of g(fB , fC)
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Figure 17: level curves of g(fB , fC)
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In conclusion. by using (eq 3.3) - (eq 3.5) the optimal betting ratios can
easily be calculated for this type of game. A final point of interest is for what
values of (pA, pB , pC) should the gambler play the game. Using (eq 3.2) and
after inserting the optimal betting ratios ((eq 3.3) - (eq 3.5)) we get the following
constraint

pA · ln(2 · pA) + pB · ln(2 · pB) + pC · ln(2 · pC) > 0

We say that the gambler should play the game if he will have a positive
utility function. If this constraint holds for a selected (pA, pB , pC), then the
gambler’s geometric growth rate will be positive and he should bet in the Horse
Racing game.

3.1.1 Horse Racing Simulations

This sections contains simulations that describe various scenarios of the Horse
Racing game. Suppose a gambler wants to optimally bet his capital on three
different horses (A, B and C) winning a horse race. The following is a list of
optimal betting fractions (fA

∗, fB
∗, fC

∗) obtained using (eq 3.3) - (eq 3.5) with
different values of (pA, pB , pC): (0.6, 0.1, 0.3), (0.3, 0.4, 0.3), (0.1, 0.75, 0.15).

• Scenario A: (fA, fB , fC) = (0.6000, 0.1000, 0.3000)
• Scenario B: (fA, fB , fC) = (0.30000.4000, 0.3000)
• Scenario C: (fA, fB , fC) = (0.1000, 0.7500, 0.1500)

In scenario A because both horse A and C have the same probability of win-
ning then the gambler should bet the same amount on both horses and leave
the rest of his capital for horse B which has the worst chance of winning. In
scenarios B and C the horse that has the best chance of winning should get a
bigger fraction of capital. The value of the utility function at the optimal points
calculated is listed below (using (eq 3.2)) along with the geometric growth rate
of capital that can be calculated using (eq 2.3).

• Scenario A: g(0.6000, 0.1000, 0.3000) = −0.2048 and α = 0.8148 which is
a 0.8148 − 1 = −0.1852 or 18.52 percent negative geometric growth rate be-
tween races.
• Scenario B: g(0.30000.4000, 0.3000) = −0.3958 and α = 0.6732 which is a
0.6732− 1 = −0.3268 or 32.68 percent negative geometric growth rate between
races.
• Scenario C: g(0.1000, 0.7500, 0.1500) = −0.0374 and α = 0.9633 which is a
0.9633 − 1 = −0.0367 or 3.67 percent negative geometric growth rate between
races.

We can see that the utility function values are all negative, meaning the
gambler should experience negative capital growth over the long term. Figures
18, 19 and 20 each contain five simulations of each scenario above with the
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gambler playing N = 100 horse races with the data mentioned above and each
figure shows the amount of capital the gambler holds after every bet.

Figure 18: Example 1
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Figure 19: Example 2
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Figure 20: Example 3
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It can be seen in figures 18 and 19 that the gambler’s capital is in constant
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decline and he eventually reaches a complete loss of capital. This matches the
geometric growth rate of those scenarios that was previously calculated which
is below 1 percent for each scenario which means the gambler is losing capital
in the long term when playing scenarios A and B mentioned above. In figure
20 there are more fluctuations in the capital because the gambler is betting 75
percent of his capital on the horse with a 75 percent chance of winning the race.
The geometric growth rate calculated for scenario C is closer to 100 percent
which means it is possible or the gambler to increase his capital but in the long
term he will suffer more losses then gains.

Now suppose the gambler is playing three scenarios with the following proba-
bility values of (pA, pB , pC): (0.9, 0.05, 0.05), (0.08, 0.04, 0.88), (0.1, 0.83, 0.07).

• Scenario D: (fA
∗, fB

∗, fC
∗) = (0.9000, 0.0500, 0.0500) and g(0.9000, 0.0500, 0.0500) =

0.2987 and α = 1.3482 which is a 1.3482− 1 = 0.3482 or 34.82 percent positive
geometric growth rate between races.
• Scenario E: (fA

∗, fB
∗, fC

∗) = (0.0400, 0.0800, 0.8800) and g(0.0400, 0.0800, 0.8800) =
0.2498 and α = 1.2838 which is a 1.2838− 1 = 0.2838 or 28.38 percent positive
geometric growth rate between races.
• Scenario F: (fA

∗, fB
∗, fC

∗) = (0.1000, 0.8300, 0.0700) and g(0.1000, 0.8300, 0.0700) =
0.1221 and α = 1.1299 which is a 1.1299− 1 = 0.1299 or 12.99 percent positive
geometric growth rate between races.

Figures 21, 22 and 23 each contain five simulations of each scenario above
with the gambler playing N = 100 horse races with the data mentioned above
and each figure shows the amount of capital the gambler holds after every bet.
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Figure 21: Example 4
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Figure 22: Example 5
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Figure 23: Example 6
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In each of these current scenarios the gambler is playing a game where one
of the horses has a disproportionate chance of winning the race and the other
horses have very little chance of winning the race therefore the gambler bets
most of his capital on that specific horse and bets the rest of his capital on the
other horses. This is reflected in the optimal betting ratios calculated above.
But because he is betting most of his capital on the one horse with the dis-
proportionate chance of winning he is also exposing himself to much more risk,
because if that horse loses the race then the gambler will lose most of his capital
but in the long term he still increases his capital, as can be seen in the geometric
growth rate calculated for each scenario above.

4 The Stock Market

The final activity discussed in this paper is the activity of investing in the stock
market. In this type of activity the gambler becomes an investor that wishes to
invest his capital in stock options on the stock market. He can buy or sell stock
options on the market and each stock has a different probability of increasing or
decreasing its value. For example, a stock can be worth 100 dollars in October
and in November it can increase 10 percent to the price of 110 dollars and in
December decrease by 5 percent to 104.5 dollars.

Suppose an investor has an option of buying two stocks. Each stock has
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a different probability of increasing in value: (pA, pB) and decreasing in value
(qA = 1− pA, qB = 1− pB). Both stocks can rise or fall independently of each
other. Let us assume that when the stock increases in value the percentage it
can increase is constant, it doesn’t change between months, and at the end of
the month the investor has a capital increase of what he invested into buying
the stock multiplied by a factor of how much the stock’s value increased. For
example, using the previous example, the investor would have 110 dollars in
November because the stock increased ten percent. If the stock increases again
the next month (by 10 percent because the percentage it increases is constant)
then he would have 121 dollars. The same applies if the stock lowers in price.
If the stock rose in value then the investor’s capital is the amount of capital
he invested in the stock multiplied by V ∈ (1,∞) and if the stock fell in value
then the decrease in capital for the investor is the amount of capital he invested
multiplied by the fraction Z ∈ (0, 1). This case strongly resembles the case of
the general coin toss but in this case it is defined as a coin toss game of V to Z
odds for each stock option. The fraction of capital he invests on each stock is
fA, fB ∈ [0, 1], fA + fB = 1.

For example, if the investor were to invest in the two stocks and the next
month the value of stock A rose and the value of stock B fell then his current
capital would be:

X1 = X0 · (VA · fA + ZB · fB)

If in the next month stock B rose and stock A fell

X2 = X1 · (ZA · fA + VB · fB) = X0 · (VA · fA + ZB · fB) · (ZA · fA + VB · fB).

The investor is investing in stock options for a series of N ∈ N months with

• WL ∈ N - number of months in which stock A rose in value and B fell in
value.
• LW ∈ N - number of months in which stock B rose in value and A fell in
value.
• WW ∈ N - number of months in which stocks A and B rose in value together.
• LL ∈ N - number of months in which stocks A and B fell in value together.
with WL+LW +WW +LL = N . The equation describing the current capital
of the investor is

XN = X0 · (VA · fA + ZB · fB)WL · (ZA · fA + VB · fB)LW · (VA · fA+

VB · fB)WW · (ZA · fA + ZB · fB)LL. (eq 4.1)

The next step is defining the utility function

G(fA, fB) = ln(XN

X0
) = WL · ln(VA · fA +ZB · fB) +LW · ln(ZA · fA +VB · fB)+

WW · ln(VA · fA + VB · fB) + LL · ln(ZA · fA + ZB · fB)
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as before this is the logarithmic capital growth function of N discrete series of
investments. We divide by N

g(fA, fB) = 1
N ·G(fA, fB) = 1

N · ln(XN

X0
) = WL

N · ln(VA · fA + ZB · fB)+

LW
N · ln(ZA · fA + VB · fB) + WW

N · ln(VA · fA + VB · fB)+

LL
N · ln(ZA · fA + ZB · fB)

and after a very long series of investments

g(fA, fB) = limN→∞( 1
N · ln(XN

X0
)) = limN→∞(WL

N ) · ln(VA · fA + ZB · fB)+

limN→∞(LW
N ) · ln(ZA · fA + VB · fB) + limN→∞(WW

N ) · ln(VA · fA + VB · fB)+

limN→∞(LL
N ) · ln(ZA · fA + ZB · fB)

When we divide WL by the number of months overall the investor has spent
investing in stocks A and B (assuming N is a very large number) and using
the Law of Large Numbers we get limN→∞(WL

N ) = pA · qB . The same goes for
LW,WW,LL.

g(fA, fB) = pA · qB · ln(VA · fA + ZB · fB)+ (eq 4.2)

qA · pB · ln(ZA · fA + VB · fB) + pA · pB · ln(VA · fA + VB · fB)+

qA · qB · ln(ZA · fA + ZB · fB)

The next step is to find the maximum of the utility function to get the op-
timal betting ratios. This problem can be defined as a nonlinear constrained
optimization problem and it can be solved in MATLAB. The optimization prob-
lem is defined

Maximize:
g(fA, fB) = pA · qB · ln(VA · fA + ZB · fB) + qA · pB · ln(ZA · fA + VB · fB)+

pA · pB · ln(VA · fA + VB · fB) + qA · qB · ln(ZA · fA + ZB · fB)

subject to the equality constraint: h(fA, fB) = fA + fB − 1 = 0 with the upper
bound constraints: fA, fB ≥ 0 where g(fA, fB) is the objective function and
h(fA, fB) is the equality constraint. It is also possible to insert the constraint
h(fA, fB) into the objective equation and attempt to solve it analytically.

g(fA) = pA ·pB · ln(VA ·fA +VB · (1−fA)) +pA · qB · ln(VA ·fA +ZB · (1−fA))+

pB · qA · ln(ZA · fA + VB · (1− fA)) + qA · qB · ln(ZA · fA + ZB · (1− fA))

the domain of values of (fA) is

∆ = (fA ∈ ∆ : 0 ≤ fA ≤ 1)
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The following figure is a graph of g(fA) using the parameters listed in the
Stock Market Examples section below.

Figure 24: Graph of g(fA)

0 0.2 0.4 0.6 0.8 1
0

0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009

0.01
0.011
0.012
0.013
0.014
0.015
0.016

f
A

 

 

Scenario A
Scenario B
Scenario C

Now to find the critical point. The first derivative of the function g is

g′(fA) =
pA · pB · (VA − VB)

VA · fA + VB · (1− fA)
+

pA · qB · (VA − ZB)

VA · fA + ZB · (1− fA)

− pB · qA · (VB − ZA)

ZA · fA + VB · (1− fA)
+

qA · qB · (ZA − ZB)

ZA · fA + ZB · (1− fA)
= 0

This is a difficult equation to solve therefore we will not continue attempting
to solve this problem analytically, we will use the MATLAB function fmincon
which is used for finding a constrained minimum of a function of several vari-
ables.

4.1 Stock Market Simulations

This section contains simulations that describe various scenarios of the Stock
Market game. Suppose an investor wants to invest in two stocks (A and B). Each
stock has a probability of rising in value at the end of every month. Stock A has
a pA probability of rising in value and stock B has a pB probability of rising in
value. If stock A increases in value it increases by (VA − 1) · 100 percent and if
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it falls it falls by (1− ZA) · 100 percent. If stock B increases in value it increases
by (VB − 1) · 100 percent and if it falls it falls by (1− ZB) · 100 percent. The
following is a list of scenarios using different values of (pA, pB , VA, ZA, VB , ZB).
The graphs of the utility function of each scenario are in figure 24.

• Scenario 1 - Stock A: pA = 0.5, qA = 0.5, VA = 1.08, ZA = 0.95, Stock B:
pB = 0.5, qB = 0.5, VB = 1.05, ZB = 0.95
• Scenario 2 - Stock A: pA = 0.5, qA = 0.5, VA = 1.08, ZA = 0.94, Stock B:
pB = 0.65, qB = 0.35, VB = 1.01, ZB = 0.94
• Scenario 3 - Stock A: pA = 0.3, qA = 0.7, VA = 1.20, ZA = 0.94, Stock B:
pB = 0.9, qB = 0.1, VB = 1.02, ZB = 0.98

Using the fmincon function in MATLAB for solving constrained nonlinear
optimization problems the following optimal betting fractions and geometric
growth rates were calculated.

• Scenario 1 - fA
∗ = 1, fB

∗ = 0 and g(1, 0) = 0.0128 and α = 1.0129 which is a
geometric growth rate of 1.29 percent.
• Scenario 2 - fA

∗ = 1, fB
∗ = 0 and g(1, 0) = 0.0075 and α = 1.0075 which is a

geometric growth rate of 0.76 percent.
• Scenario 3 - fA

∗ = 0.1492, fB
∗ = 0.8508 and g(0.1492, 0.8508) = 0.0160 and

α = 1.0161 which is a geometric growth rate of 1.61 percent.

Figures 24, 25 and 26 each contain five simulations of each scenario (1 ,2, 3)
over N = 100 months with the data mentioned above and shows the amount of
capital the investor holds after every investment. The first figure contains five
simulations of scenario 1, the second of scenario 2 and the third of scenario 3
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Figure 25: Example 1
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Figure 26: Example 2
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Figure 27: Example 3
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The geometric growth rate of scenario 1 calculated above is 1.29 percent and
if we look at figure 25 we can see the investors capital grow at a small rate in
all the simulations. The optimal betting ratios calculated are fA

∗ = 1, fB
∗ = 0

meaning the optimal point of the function is on the edge of the interval [0, 1]
meaning the investor should invest only in one stock (stock A). In figure 26 we
can see the investors capital grow at a smaller rate then in the previous figure,
which matches the smaller growth rate calculated for scenario 2 and the opti-
mal betting ratios calculated are the same as in scenario 1. In figure 27 we get
the best growth rate of all the scenarios. We can clearly see that the optimal
betting ratios and the geometric growth rates calculated for each scenario are
compatible to what we see in figure 24.

What can be derived from figures 25 and 27 about the probabilities of the
stock options is that, the higher the probability of a stock option to rise, the
more Kelly tells the investor to bet only on that option, if the probability is
high enough.

Another point of interest is how the parameters V,Z effect the optimal bet-
ting ratios. In figure 26, stock B has a better probability of rising in price then
stock A, but stock A has a larger increase percentage then stock B. This tells
us that even if the probability of stock X rising is lower then stock Y rising,
but the increase percentage of stock X is much higher, then Kelly tells us to bet
more on stock option X.
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5 Concluding Remarks

The purpose of this paper was to present an approach of how to find an optimal
amount of capital to gamble in a bet. We examined the approach of maximizing
the expected value of a gamblers capital and we saw that that approach could
easily lead the gambler to financial ruin. We next analyzed the Kelly Criterion
approach and proved that it lowers the risk of financial ruin to the gambler to
zero and that it is possible to easily calculate optimal betting ratios for a game
of Coin Toss. We later expanded to the case of betting in games of Horse Racing
and to investing in the Stock Market and found that it is possible to calculate
optimal betting ratios for these types of games although in the case of the Stock
Market the computations get substantially more complex the more stocks we
wish to bet on simultaneously, in each game respectively. It also possible to
apply the Kelly Criterion to other types of games.

We created mathematical models for the Coin Toss, Horse Racing and Stock
Market games and we used MATLAB to simulate different scenarios of those
games and we saw that the Kelly Criterion is effective but mostly for long term
games. For short term games the increase in capital is quite small and there is
risk in ending a series of short term bets with a final amount of capital being less
then the initial amount of capital. This makes this approach less feasible and
hard to apply to many real life gambling situations. In most cases when playing
long term games, where a great deal of time has passed, the Kelly approach
generates a higher rate of return.
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7 Addendum

Matlab code of Coin Toss examples

clear
x 0 = 1000;
num of simulations = 5;
N = 100;
p = 0.65;
f = 0.3;

for sim num = 1:num of simulations

rand vector = rand(N,1);
for i = 1:N

if rand vector(i) < p
rand arrays(sim num, i) = 1;

else
rand arrays(sim num, i) = 0;

end
end

capital arrays(1, sim num) = x 0;
for i = 2:N

if rand arrays(sim num, i) == 1
capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (1 + f);

elseif rand arrays(sim num, i) == 0
capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (1 − f);

end
end

end

plot(capital arrays);

Matlab code of Horse Racing examples

clear
x 0 = 1000;
N = 100;
num of simulations = 5;

pA 1 = 0.1;
pA 2 = 0.83;
pA 3 = 0.07;
f1 A = pA 1;
f2 A = pA 2;
f3 A = pA 3;

for sim num = 1:num of simulations

rand vector = rand(N,1);
for i=1:N

if rand vector(i) >= 0 && rand vector(i) <= pA 1
rand arrays(sim num, i) = 1;

end
if rand vector(i) > pA 1 && rand vector(i) <= (pA 1 + pA 2)
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rand arrays(sim num, i) = 2;
end
if rand vector(i) > (pA 1 + pA 2) && rand vector(i) <=1

rand arrays(sim num, i) = 3;
end

end

capital arrays(1, sim num) = x 0;
for i = 2:N

if rand arrays(sim num, i) == 1
capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (1 + f1 A − f2 A − f3 A);

elseif rand arrays(sim num, i) == 2
capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (1 − f1 A + f2 A − f3 A);

elseif rand arrays(sim num, i) == 3
capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (1 − f1 A − f2 A + f3 A);

end
end

end

% plot
plot(capital arrays);

Matlab code of Stock Market examples

clear
x 0 = 1000;
N = 100;
num of simulations = 5;

% 1 = A rises B falls
% 2 = A falls B rises
% 3 = A rises B rises
% 4 = A falls B falls

% scenario A
p A = 0.5;
q A = 0.5;
p B = 0.5;
q B = 0.5;
V A = 1.08;
Z A = 0.95;
V B = 1.05;
Z B = 0.95;

fA = 1;
fB = 0;

for sim num = 1:num of simulations

rand vector A = rand(N,1);
for i = 1:N

if rand vector A(i) < p A
rand arrays A(sim num, i) = 1;

else
rand arrays A(sim num, i) = 0;

end
end
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rand vector B = rand(N,1);
for i = 1:N

if rand vector B(i) < p B
rand arrays B(sim num, i) = 1;

else
rand arrays B(sim num, i) = 0;

end
end

% compute scenario
capital arrays(1, sim num) = x 0;

for i = 2:N
if rand arrays A(sim num, i) == 1 && rand arrays B(sim num, i) == 0

capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (V A * fA + Z B * fB);
elseif rand arrays A(sim num, i) == 0 && rand arrays B(sim num, i) == 1

capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (Z A * fA + V B * fB);
elseif rand arrays A(sim num, i) == 1 && rand arrays B(sim num, i) == 1

capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (V A * fA + V B * fB);
elseif rand arrays A(sim num, i) == 0 && rand arrays B(sim num, i) == 0

capital arrays(i, sim num) = capital arrays(i − 1, sim num) * (Z A * fA + Z B * fB);
end

end
end

% plot
plot(capital arrays);
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