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Abstract

In this article, we'll discuss The Douglas Rachford Method, some of it's history, and it's applications.
We'll be seeing dif ferent examples of how the Method works, and we'll also show some variations of this

method that can be very useful, in dif ferent cases.

We'll also see some applications of this method, including finding Magic Squares, solving Sudoku riddles,

solving Nonograms, and many more problems in math.

First we'll start with some definitions and theorems, that are the basis and the framework that we lay our
algorithm on.
Then I will introduce the Douglas Rachford algorithm, giving a brief summary of what is the Douglas Rachford

algorithm, it's history, the idea behind it, some of it's applications, and also investigate it's limitations.



1.Preliminaries

Definition 1 — Convex Set

Let H be a vector space and let C € H. We say that C is convex if :

Vced,

Ac+ (1 —-2DceC VrAe[O1].

In another words, one could say that a set is convex, if every set of points on the line connecting two

points that are in the set is also in the set.

Convex Not Convex

/ \ /

Definition 2 — Closest Point Projection

Let C ¢ R™ be some closed set.

The closest point projection in C is a set valued mapping P¢: R™ —
C, which assigns for any x € R™

apoint in C, denoted by P-(x), and is characterized by:

Pe(x) = {z € C:|lx 21| = inf[lx - cl|}

Definition 3 — Reflection of a Point

The reflection of point x in the set C is also a set — valued mapping R¢: R™ —» C
defined by:

Re(x) =2xPc(x) —x



2. Introduction — The Douglas Rachford Method

History

The Douglas — Rachford algorithm, which is also known as the Peaceman — Rachford
splitting algorithm or the Forward — backward algorithm, is an iterative method

for solving convex optimization problems.

The method was first proposed by R. Douglas and H. H. Rachford in 1956 to solve partial
dif ferential equations, and later it was rediscovered and popularized in the optimization

community in the 1970s and 80s, and is still used to great success to this day.

Idea
The idea of the algorithm is to iteratively solve two simpler optimization subproblems,

which are typically easier to solve than the original problem.

Applications

The Douglas — Rachford algorithm has a wide range of applications in many fields,
Including combinatorial problems such as Magic Squares, Sudoku, Nonograms,

also Signal Processing, image analysis, machine learning, and many more.

It can be used to solve a variety of optimization problems, such as sparse signal recovery,

compressed sesning, and others.
Advantages and Limitations

One of the advantage of the Douglas Rachford algorithm is that it can handle

complex constraints and nonsmooth objective functions, which are common in many optimization
problems.

Although it is very successful and useful in many fields of math, the Douglas Rachford does

have its limitations, and in some cases, can converge very slowly, or may not converge at all for non

convex problems.

Throughout time people came up with dif ferent variations and modifications of the algorithm,
to address these limitations, including accelerated variants to have faster convergence, and some

preconditioned versions, that work only when some preconditions are met.



3. Douglas Rachford Method

3.1. The classic Douglas — Rachford Method

The classic Douglas —
Rachford method was originally introduced in connection with PDEs
Arising in heat conduction [1]. Convergence of this method was later proven in [2], who also

proposed this method to find zeros of the sum of two maximal monotone operators.

Given two subsets A, B of hilbert space H, the method iterates by repeatedly applying the
2 — set Douglas — Rachford Operator:

— I+RgRy
Tap ==

Where I denotes the identity mapping, R,(x) denotes the reflection of a point x €
H relative

to the set A.

The reflection can be defined as:
Ry(x) = 2P4(x) — x

Where P4(x) is the closest point projection of the point x onto the set A, that is:

Py(x) = {zEA:||x—z|| = 6ilrellfl||x—a||}

In general, the projection P, is a set valued map ** ping. If Ais closed and convex,
the projection is uniquely defined for everyh point in I, thus yielding a single valued mapping.

(See [3, Theorem 4.5.1))

Applied to closed and convex sets, convergence is well understood and can be explained by

using the theory of (firmly) nonexpansive mappings.



Theorem 1

Let A,B € H be closed and convex sets with nonempty intersection. AN B # Q.

Forany xy € H, set xp41 = Ty pXy.

Then (x,,) converges weakly to a point x such that P4x € AN B

(x,) converges to a point x, but x is not neccessarily belonging to AN B.
It is what's called the shadow sequence (P4x,) that converges to a point P4x that does

belongto AN B.



3.2. The Cyclic Douglas — Rachford Method

There are many possible generalizations of the classic Douglas — Rachford iteration.
Given three sets A, B, C and x, €
H, an obvious canditate is the iteration defined repeatedly
by setting xy 41 = Ty g c X, Where

— I+RcRBRy
TA,B,C — 2

For closed and convex sets, like Ty g, the mapping T, g ¢ is firmly nonexpansive, and has atleast one

fixed point provided AN B N C # Q.

Using a well known theorem of Opial (See [4], Theorem 1), (x,,) can be shown to converge weakly to a
fixed point,
However, attempting to obtain a point in the intersection of the sets using said fixed point

has been, so far, unsuccessful. We will illustrate this failure in the next Example:

Instead, Borwein and Tam (See [5]) considered a cyclic application of 2 —

set Douglas Rachford

operators. given N sets Cy,C,, ...,Cy, and xy € H, their cyclic Douglas rachford scheme
iterates by repeatedly setting x,1 = Ti¢, c,,..cy1%n

where

Tic, c,,..cy] denotes the cyclic Douglas — Rachford operator defined by:

Tic,,cprnenl = Teysey Tey o =0 TeyeaTey 6y

In the consistent case, the iterations behave analogously to the classical Douglas —

Rachford Scheme.



Theorem 2 (Cyclic Douglas — Rachford)

Let Cy,C5, ..., C, © H be closed and convex sets with a nonempty intersection.

For any x, € H, set xu4q = Tc, c,,..cn]1%n-

Then (x,) converges weakly to a point x such that P¢,x = PC].x forallindices i,j.

Moreover, P x en, C; for each index j.



3.3 Douglas Rachford Algorithm to find the Intersection of N balls in R™

Douglas Rachford can be used to find the intersectio nof N balls in R™.

To demonstrate this, we're going to be dealing with R?, and give two examples.

One example is an example of 2 circles with exactly one intersecting point, and we show

how taking an arbitrary point P, and running the DR iterations on this point P, slowly converges

to the one intersection point.

We'll also demonstrate the same thing for 3 Circles in R?, Using the cyclic Douglas Rachford method.
But before doing so, we need a mathematical foundation of how to calculate a projection

of an arbitrary point P, relative to a circle with center C and radius R.

Finding the projection of an arbitrary point P onto a circle with center

C and radius R

We know from geometry, that a tangent to a circle is perpendicular to the radius at the tangency point.

We can use this idea to find the projection of every point P, relative to the given circle.

We draw a straight line from C to P, and this straight line is perpendicular to the tangent line
at the intersection point of the Line we made from C to P, and the circumference of the circle. Call
this tangency point O.

Therefore, the projection of point P onto the circle, is exactly the point O.

We can use algebra to find explicitly the point O:

We know that a straight line is given by y = mx +

b, and a circle with center (x,,y,) with radius r is given

by:

(x=x0)>+(y —yo)? =172

We want to find where the straight line and the circle intersect, so we pluginy = mx +

b in the circle equation.

We'll get two results, which makes sense since a straight line that goes through the middle

of the circle, will intersect the circle at two points. Afterwards, we will choose the closest point.

(x —x0)* + (y —yo)* =71?
(x—x0)2+ (mx+b—yy)% =12



(mx +b—yy)? =(mx+b—1yy)*(mx+b—y,) =m?x? + mbx — myyx + mbx + b?> — by, —

myox — yob + y§
=m2x? + b? + y2 4+ 2mbx — 2myyx — 2by,

(x—x0)?+ (mx+b—y)? =

= x2 — 2xox + x3 + m?x? + b2 + y¢ + 2mbx — 2myyx — 2by,

=x2(m? + 1) + x(2mb — 2my, — 2xy) + (x¢ + b? + y¢ — 2by,) = r?

= (m? + 1) *x2 + 2mb — 2my, — 2x) * x + (x& + b2 + y3 — 2by, —72) =0

So we have our quadratic formula Ax?> + Bx +C =0

B? = (2mb — 2myy — 2x0)? = (2mb — 2my, — 2x,) * (2mb — 2my, — 2x,) =
= 4m?b? — 4m?by, — 4mbx, — 4m?by, + 4m?y3 + 4myyx, — 4mbx, + 4myex, + 4x3
= 4m?b? + 4m?y¢ + 4x3 — 8m?by, — 8mbx, + 8myyx,

(—2mb+2my0+2x0)i\[4m2b2+4m2y§+4x(2, —8m2by,—8mbxy+8myoxo—4*(m2+1)*(xZ+b2+y3 —Zbyo—r2)>

X1,2 =

2(m2+1)
(—mb+my0+x0)i\/m2b2+m2y5+x5—Zmzbyo—Zmbx0+2myoxo—mzxg—mzbz—m2y5+2m2byo+m2r2—x%—bz—y§+2by0+rz>
X =
1,2 m2+1
((—mb+myo+xo)iJm2r2+2myoxo+2byo+r2—Zmbxo—mzxﬁ—bz—y%,)
X12 =

m2+1

We had found a formula, that gives us two X coordinates, where the line y=mx+b intersects the circle.
Then, we can just plug these x's to one of the equations, preferably y = mx +
b because it's

easier to calculate, to find the corresponding y values.

so we get two points: (xq,y1), (x2,¥2).
Then to decide which is the desired point, we take the one that is closer to P. We did this by
calculating the distance from p to (x1,y,) calling it dist1, and from p to (x,,y,) calling it dist2,



and then deciding which is the right point, by taking the one that is responsible for the smaller
distance out of distl and dist2. Basically we're taking min(dist1, dist2).

Note that the cyclic Douglas Rachford algorithm is used when we have atleast 3 sets, and the classic DR
is used when we have two sets. Moreover, when dealing with the classic Douglas —

Rachford method,

we have to keep in mind that the iterations do not give us a point belonging to the intersection of

the sets, but rather they give us a point, whose projection on the first set A, is in the intersection.



3.4. Algorithms used in our Numerical Experiments:

I've written dif ferent algorithms for dif ferent problems. But the main idea of the algorithms,

is to be able to calculate

the projection of a point, onto a set. The idea behind the algorithms is dif ferent for the case of having
to project a point onto a line, or onto a circle.

The list of the algorithms presented is in the order of their usage in the Numerical Experiments

Section of this article

Algorithm 1 — Used to plot the 3 Lines and X in the 3 Line example
[1 = plotLinesPoint{p)
x=p(1);

y=p(2);
x1=linspace(-4,4);

y1=(1/sqrt(3))*x1;
y2=(-1/sqrt(3))*x1;

plot(x1l, y1, ., X1, y2,
¥1line(@);

axis

Algorithm 2 — Used to calculate the projection of a point, onto a line.

Used in the 3 Line Example.



———— ——— [ ————

[proj] = lineProjection(m,b,p)

x=p(1);

y=p(2);
values=linspace(-2,2);
f=m*values+b;

perpSlope=-1/m;

yInt=-perpS5lope*x+y;

¥Intersection=(yInt-b)/(m-perpSlope);
yIntersection=perpSlope*xIntersection+yInt;

proj(l)=xIntersection;
proj{2)=yIntersection;

Algorithm 3 — Used to calculate the reflection of a point onto a line.

used in the 3 Line Example.

[ref] = lineReflection(m,b,p)

proj=lineProjection(m,b,p);
ref=2*proj-p;




Algorithm 4 — Used to calculate one full cyclic Iteration of the Cyclic Douglas

Rachford variation. Used in the 3 Line Example.

= circularlteration(x@

hold

x=x0(1); y=x0(2);

refA=[-x, v];
refB=1lineReflection{1l/sqrt(3),0,refA);
tAB=(x@+refB)/2;

hold
plot([x0(1) tAB(1)], [x@(2) tAB(2)],

x0=tAB;
refB=1lineReflection{1l/sqrt(3),0,x8);
refC=lineReflection(-1/sqrt(3),0,refB);

tBC=(x@+refC)/2;

hold
plot([x0(1) tBC(1)], [x@(2) tBC(2)],

x@=tBC;
refC=lineReflection{-1/sqrt(3),8, x8);
x=refC(1); y=refC(2);

refA=[-x v];

tCA=(x@+refA)/2;

hold
plot([x@(1) tCA(1)]1, [x@(2) tCA(2)],

point=tCA;




Algorithm 5 — Used to find the projection of a point, onto a 2D Ball.

Used in every example involving balls.

[Intersection] = twoDcircleProjection{r, center, p)

x@=center(1);
y@=center(2);

x=p(1);

y=p(2);

dist=sqrt(({x-x8)"2+(y-y@)"2);
dist>r

xB==x
Intersection=[x0 (y@+r)];

m=(y-y@)/(x-x@);
b=y-m*x;

xIntl=(-m*b+m*y@+x@+sqri(m*2*r"2+2 *m*y@*x0+ 2*b*y@+r"2-2*m*b*x0-m* 2*x0"2-b" 2[-y0"2) ) /(m " 2+1) ;
*xInt2=( -m*b+m*y@+x0-sqrt(m*2*r" 242 *m*y@*xB8+ 2 *b*y@+r 2 -2*m*b*x0-m  2*x0"2-b"2[-y0"2) ) /(m " 2+1) ;

yIntl=m*xIntl+b;
yInt2=m*xInt2+b;

distl=sqrt((x-xIntl)"*2+{y-yIntl)"2);
dist2=sqrt{(x-xInt2)*2+{y-yInt2)"2);

Intersection=[xIntl yIntl];
distl>dist2
Intersection=[xInt2 yInt2];

Intersection=p;




Algorithm 6 —

Used to find the reflection of a point, relative to a 2D Ball. Used in every example

involving balls.

[ref] = twoDcircleReflection(r,center,p)

proj=twoDcircleProjection(r,center,p);
ret=2*proj-p;




Algorithm 7:

Used to showcase the Classic Douglas Rachford iterations, having two 2D balls.

[point] = CircleCircularDR(rl1, r2, centerl,center2, p)

x=p(1);
y=p(2);

projl=twoDcircleProjection(rl,centerl,p);
hold

plot{projl(1),proj1(2),

cxl=centerl(1);

cyl=centerl(2);

cx2=center2(1);
cy2=center2(2);

theta=linspace(@,2*pi);
x1=cxl+rl*cos(theta);
yl=cyl+rl*sin(theta);

x2=cx2+r2*cos(theta);
y2=cy2+r2*sin{theta);

hold
plot(xl, yl1);
hold
plot(x2, y2);
hold
plot{x,y, ©');

refA=twoDcircleReflection(rl, centerl,p);
refB=twoDcircleReflection(r2, center?,refh);

point=(p+refB)/2;

proj=twoDcircleProjection(rl, centerl, point);

hold

plot{point(1), point(2), );

hold

plot([x point(1)], [y point(2)], );
hold

plot([proj1(1) proj(1)], [prejl(2) proj(2)],
hold

plot(proj(1), proj(2), );




Algorithm 8:

Used to showcase the Cyclic Douglas Rachford iterations, involving three 2D Balls. This algorithm
can be generalized for N Balls, N = 3. But I didn't do this. The idea is the same for N >

3, we'll just have to add more sets and run more calculations of the cycle.

[point] = threeCircleCircularDR(rl, r2, r3, centerl,center2,center?, p)

x8=p;

oxl=centerl(1);
cyl=centerl(2);

ox2=center2(1);
cy2=center2(2);

ox3=center3(1);
cy3=center3(2);

theta=linspace(@,2*pi);
xl=cxl4rl*cos(theta);
yl=cylirl*sin(theta);

x2=cx4r2¥cos(theta);
y2=cyHr2*sin(theta);

x3=cx3+r3*cos(theta);
y3=cy34r3*sin(theta);

hold

plot(xl, y1);

hold o

plot(x2, y2);

hold

plot(x3,y3);

hold
plot(x8(1),x8(2), o');

refA=twoDcircleReflection(rl, centerl, p);
refB=twoDcircleReflection(r2,center2, refa);

tAB=(p+refB)/2;

x8=tAB;
refB=twoDcircleReflection(r2,center2,x8);
refC=twoDcircleReflection(r3,center3,refB);

tBC=(xe+refC)/2;




x8=tBC;
refC=twoDcircleReflection(r3,center3,xa);
refA=twoDcircleReflection(rl,centerl,refC);

tCA=(x@+refh)/2;

hold
plot([p(1) tcA(1)]. [p(2) tCA(2)],

point = tCA;

Algorithm 9:

Used in the nonconvex example of a circle and a line in two dimensions. This is the DR algorithm.

[point] = lineCircleDR(m,b,r,center,p)

x1=linspace(-5,5);
yl=m*x1+b;
theta=linspace(@,2%pi);

x2=center(1)+r*cos(theta);
y2=center(2)+r*sin{theta);

hold

plot(x1,yl, - );
hold

plot{x2,y2};

hold

plot{p(1).p(2), = ');

projal=twoDcircleProjection(r,center,p);
hold
plot{projAl{l1),projAl(2), JH

refA=twoDcircleReflection{r, center,p);
refB=lineReflection{m,b,refa);

tAB={p+refB)/2;

hold

plot (tAB(1),tAB(2), o );

point=tAB;

projA2=twoDcircleProjection{r, center,point);
hold

plot{projA2{l),projA2(2), |H

hold

plot([p(1) point(1}], [p(2) point(2)], ¥
hold

plot{[projal{l) projAz(1)], [projAl({2) proja2(2)].




Algorithm 10 — Von Neumann Alternating Projection Method

Used as an example of another algorithm that converges to the intersection point of a circle and a

straight line,using a dif ferent method, called the Von Neumann Alternating Projection method.

[point] = vonNeumann(m,b,r,center,p)

x1=linspace(-5,5);
yl=m*x1+b;
theta=linspace(8,2*pi);

®2=center({1)+r*cos(theta);
y2=center(2)+r*sin(theta);

hold

plot(x1,yl,  );
hold

plot({x2,y2};

hold

plot(p(1),p(2), =');

projA=twolcircleProjection(r,center,p);

hold

plot([p(1) proja(1)], [p(2} projA(2)],
projB=lineProjection{m,b,proja};

point=projB;

hold

plot([point(1) projA(1)], [point(2) projA(2)],
hold

plot{point{1),point{2}, 'H

hold

Using what we have until now, we can start with some Numerical Examples.



4. Numerical Experiments

Example 1 (Failure of the three set Douglas —

Rachford iterations.)

We give an example showing the iteration described previously, can fail to find a feasible

point.

Consider the one — dimensional subspaces A,B,C c R? defined by: ..

A:={A(0,1): 1 € R} 05 e '
B ={A(v3,1):1 € R} ° //

C = {A(-V3,1):1€ R}. | @/‘/

ThenAnBnC ={(0,0)}.
Let xo = (—V3,-1).

In the figure above we have the three subspaces, and the yellow circle, marked by a blue

circle, is the point xy = (—V3,-1)

We know that in the three set douglas — rachford, the douglas rachford operator

is defined as follows:

Xn+1 = TA,B,an
where

. I+RcRBRy
TA,B,C — 2

Reflecting x, relative to A in matlab seems dif ficult, as it's dif ficult to define a function
that is only vertical, since it has infinite slope, it cannot be defined as y = mx + b like the
other lines.

But since we know that A is a vertical line, reflecting relatively to it is straightforward,



Ry(xp) = (\/§, —1), That is, just changing the sign of the x value.

Now we'll show that

)

xo € Fix(R.RgR,), which will yield to the fact that x, € Fix (—HRCRBRA)

meaning that x, is a fixed point of the three set douglas rachford operator in this scenario.

To show that, we'll calculate Rg and R, and to calculate Ry and R, we will use the relationship
between the reflection of a point and it's projection, and we'll also use

a function that I built in matlab that gets as an input, the slope m and intersection b of a line,
and a point p;, and returns another point p,, which is the projection of p; on the line

represented by m and b.

We know that if we have a vector v and a line |,
then
Ref;(v) = 2Proj;(v) — v, Meaning that the reflection of vonl

is 2 times the projection of v on l, minus the vector v.

We can use our function and this relationship to find Rg and Ry.

Rp(x9) = 2Pg(xg) — xg
R4 (x0) = 2P4(xp) — x

In our case,

we could write B and C as:

1
Blyl =T§X
1
Clyz = —\/—gx

Let's do this:



That's our initial figure, with all the sets, and x, marked as a small yellow

circle on the red line.

Now we want Ryx,, since A is the vertical line, we'll just calculate it's reflection
straightforward.

since x is (—\/§, —1), then Ry(xy) = (\/§, —1).

Let's add this to the plot:



A = ) |

2F R

Rl s s s s s s ]

Now we want RgR,x,, which just means,

to reflect the last point we got which is (vV3,—1), relative to B.

And to do that, I've made a function that returns me the point which is the reflection

of apoint relative to a set.

21 B




And finally, we want R;RgR4x,, which just means

to reflect our last point which is (0,2), relative to C.
And once again I'll do this using the function i've written to find a reflection.

And we see using the function I've made, that the output (which is the reflected point),
is (—\/§, —1), which is just x,.
R-RpR4xy = Xy, meaning that x, € Fix RcRgRyx, . Therefore x, € Fix ZRcRBRa

The code I've used



>> plotLinesPoint ([-sgrt(3) -11)

>> hold

>> plot(sgrt(3),-1, )

>> refB=lineReflection(l/sqrt(3),0, [sqrt(3) -11):
>> xl=refB(l), yl=refB(2);

-6.6613e-16

>> hold
>> plot(xl,vl, )

>> refC=lineReflection(-1/sqrt(3),0, [0 21);

y2=refC (2

-1.0000

Meaning that x is a fixed point of the operator.

Meaning that x, converges to x,, no matter how many time we use this operator.

By douglas rachford theorem,



xo converges slowly to a point x such that P,x € AN B.

In our case,

ANnBnC ={0,0}), and x, does converge, to itself, since it's a fixed point.
But if we check

Pyxy = Projection of x, relative to a vertical line = (0,—1) # (0,0)

Pgxy = Using our algorithm of calculating a projection = x5 = (—\/§, —1)

Pcxo = Using our algorithm of calculating a projection = (— \/;,%)

>> projB=lineProjection(1l/sqrt(3),0, [-sgrt(3),-11):
/sqrt(3),0, sqrt(3), -11):

0.5000

And we see that the Douglas — Rachford algorithm fails for the three set method.



Example 2 (Example 1 Revisited)

Now we revisit Example 1, but we're using a dif ferent approach.

Consider the cyclic Douglas —

Rachford scheme applied to the sets of the Previous example.
As before, let x, = (—\/§, —1).

By theorem 2, the sequence (x,) converges to a point x such that

PAx=PBx=PCx=(0,0)

We know that for two sets, A and B,

In our example, we have only 3 sets, A,B and C.
So starting with x,,

Our circular iterations are:

TpBXo

Tp,cTaXo

Tc,aTp,cTapXo

and so on ...

In order to do this simulation ef fectively, I've written a code that simulates one full cyclic

Iteration at a time. The code gets as an input a point x, and calculates for us

Tc 4T cTapxo, aswell as drawing the lines from xy to Ty pxy, from

Ty pxo to T Ty pxo and so on.

Then we could let x; = T¢ 4Tg ¢ T4 pxo and input x, for the next cyclic Iteration.

After one run of the circularlteration (Input isxy = (—\/§, —1))



After two runs of the circularlteration (Input isx; = T¢ ATB,CTA,BxO)

We can see that each run of adds 3 lines, that is because we have 3 Douglas Rachford operators to

calculate

08 -
0.6 -
04

0.2

02 s
04 ~
061

0.8

After three runs of the circularlteration (Input isx; = TC,ATB,CTA,Bxl)
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After four runs of the circularlteration (Input isx3 = TC,ATB,CTA,BxZ)
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We can see that the algorithm converges in a spirally way to the intersection point.
We could run more iterations, and by the theorem, eventually we'll get to a point x such that
PAx=PBx=PCx= (0,0)

We can also see in the figure, that the spiral converges to the intersection point.



Example 3 — 2 Balls Scenario (using classic Douglas Rachford)

Inred lines we see the proggression of the sequence (x,,), where x,;1 = Typxp
In blue lines we see the proggression of the shadow sequence (P4x,), where we first need to calculate

Xn+1 and then we project it to A to find the next element in the shadow sequence.

First run of the algorithm:

Inputs:

(r1 =3, r, =3, centerl = (—3,0), center2 = (3,0), and p, = (5,7))
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Second run of the algorithm:
The inputs are the same for every iteration, expect for the point p, which changes every iteration,

and in each new iteration, we put the new p, as an input.
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Third run of the algorithm:
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10th Run of the algorithm:
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Zooming in to see the proggression of the Shadow Sequence, we can see

of the two sets.

That the shadow sequence does slowly converge to a point that belongs to the intersection
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Example 4 — 3 Balls Scenario (using cyclic Douglas Rachford)

By Theorem 2, for the cyclic Douglas Rachford,
The sequence (x,,) converges to a point x such that Pyx = Pgx = Pcx, and Pbx € AN B N

Cvje{4B,C}

As inputs for the algorithm,

I gave 3 circles (3 sets):

A = Circle with Radius 3 and center (—3,0)
B := Circle with Radius 3 and center (3,0)
C := Circle with Radius 3 and center (0,3)
and an Initial point P = (5,7)

A very specific choice to have only one intersection point at An B n C = {(0,0)}.

Since it's the cyclic DR method, each iteration requires 3 calculations: Tag, Tgc, Tca,
so in the plot there are also dif ferent colored lines:

Red for Typ of the current iteration,

Blue for Ty of the current iteration,

and Green for T4 of the current iteration.

First iteration:
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Third Iteration:

0.5

10th Iteration:

08

06 [

0.4 r

02

02r

-0.8 0.6 0.4 0.2 0 0.2 0.4 0.6

50th Iteration:

0.3

0.25

0.2

015

0.1

£ A80Qan

03 025 02 015 0.1 005 0 005 01 015 02



We can see that the sequence (x,,) does slowly converge to some value x,

such that Pyx = Pgx = Pcx = Their intersection point = (0,0).

We can also see that the blue line has disappeared only after one iteration.

The reason for that is the fact that if an element is already in a set, then it's projection or reflection

onto that set, is just the same point.

Same iterations just instead of connecting x, to Ty pxg to Tg ¢ T4 gxo and so on,

we immediately connect xo to T¢ o, Tg ¢ Ty pXo:

cagoaaq |

After 100 + Iterations:




Example 5 — Nonconvex example of a Circle and a Line

In Black lines — progression of (x;)
In Blue Lines — progression of the shadow sequence (Pyx;),
We see that the sequence (x,,) does slowly converge to a point x, such that

P,x € ANB.

The initial inputs are:

m = 0 (line with slope 0)

b = 3 (y intersect of the line)

r = 3 (radius)

center = (0,0), center of the circle

p= (5'7)' P =X

First Iteration:
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We see that the shadow sequence does converge to the point of intersection of the two sets



Example 6 —Von Neumann Alternating Projection Method
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We can see that this algorithm also converges to the intersection point of the circle and

the straight line.



5. Feasibility Problems in the Product Space

Given Cy,C,, ...,C, € R™, the feasibility problem asks:

N
Find x € ﬂCi c (R™N

i=1

A great many optimization and reconstrcution problems, both continuous and combinatorial

can be cast within this framework.

What's good about this formulation, is not just that the original feasibility problem, can be translated
into a feasilbility problem containing two sets, as we've seen above, that in that case the classic
douglas rachford algorithm does converge.

but also that the projections onto the sets which we'll soon see, C4,..,Cy, have a closed form

of Pc,,Pc,, ..., Pc,, as yet again, soon will be shown.

Define two sets C,D c (R™)N by

C ==[1Y, C;, the cartesian product of the sets C;,

Such that

C = {(cl,cz, ., Cy) € (]Rm)N|ci EC;cR™Vie{l, ...,N}},

D ={(xx,..,x) € (R™)N:x € R™}.

While the set D, the diagonal, is always a closed subspace, the properties of C are largely inherited.

For instance, when C;, Cs, ..., C,, are closed and convex, so is C.
Consider, now, the equivalent feasibility problem:

(4) Findx € CnD € (R™N

Equilvalent in the sense that

N
x € ﬂCi < (x,x,...,x) ECND.
i=1
Moreover, knowing the projections onto C;,C5, ..., C,, the projections onto C and D can be easily

computed. The proof has recourse to the standard characterization of orthogonal projection,

p=Ppx e <x—pd>=0foralld€D.



Now we'll shown an example, why this formulation is very useful to find the solution for the

feasibility problem.

We'll show how it works in two dimensions, but the idea could be generalized and extended for

every whole dimension.

Let's start with two sets:
C; =[28] cR!
C, = [3,6] € R!

we want to find x such that x € C; N C,,
C;NCy,=[36]cR?!

so every x in [3,6] will belong to that intersection.

When we define C :== C;xC,, we get that C C
R?, and in fact,we get arectangular shape in R?, which is the set C1xC,.
and D = {(x,x, ...,x) € (R™)N:x € R™} in the two dimensional ,

we'll get a function x =y, which is a vector of type the form (x,x), where x € R.

Now, notice that the intersection of the sets is one dimensional, and that their product is two
dimensional, and so isy = x, or D.

but finding a vector (x,x, ...,x) € C N D, or in our case,

(x,x) € (C;xC,) N D, we get precisely all the vectors of the form (cy,c;), where c; € [3,6],

So we can translate back from R?, to find our x that is in R that belongs to the intersection of C; N

C,.

The space product formulation allows us to find the intersection of sets,

by going to a higher dimension, and using the diagonal set to get a vector in that higher dimension,
whose all entries are the same,

and we can take the entries back to the lower dimension, to find the intersecting point, in the lower

dimension.



Theorem 3 (Product Projections)

Let x = (xq,...,xy) € (RMN,
Then

1 1
Ppx = (ﬁzlivﬂxi, ---»NZ?’:1 xl-),
and if P¢, (x1), ..., Pc, (xy) are nonempty then

Pe(x) =TI, Pe, (x;).

For clarification:

x = (xq, ..., xy) € (R™" means that x; € R™ V i, which means that x; = | - |er™, ¢

j €

Cm

RVYi,j.

Proof

For the set D:

Let (p, ..., p) € D be the projection of x onto D . For anyd € R™, one has (d, ...,d) € D.
Now

0=<x—(p,..,n),(d..,d)> =<(x1,x3, ..., x5) — (P, ..., ), (d, .., d) > =
<x;—-pd>+ <x;—pd> +-+ <xy—pd> =

Yi<x—pd> =<¥L,(x;—p),d> =<IL,x—Np,d> =0

Therefore YN, x;—Np=0&p = %* >N xi

This proves the projection onto D.

for the set C:



We now prove the projection formula for C.

We'll do this by first, prove that every x = (x4, x5, ..., xy) € (R™ such that
x € [V, P¢,(x;) = x € Pc(x) meaning that v, P, (x;) € Pcx

and then we'll show the opposite.

Foranyc = (¢4, ...,cy) €E Candp = (p1,..,Pn) € H?’:lPCi(xi) cC,

[l = cl|” = 20 |l — cil|* = Bl — il | = [1x = I
Since P;(x) € C, this shows [V, P¢,(x;) € Pex

to clarify,

p=(1...pn) €L, Pe,(xi) € C

means that p; € Pc,(x;) € R™ Vi

And

[1}1 Pc,(x) is indeed a subset set or equal to C,
because C = [, C;

and each P¢,(x;) € C;

Conversly,

letp = (p1, .., pn) € Pc(x) and suppose by contradiction that p; ¢ ch(xj) for somej.

Define q := (qy, .., qy) € (R™" where q; € ch(xj) and q; = p; if i #j.

Then

lx = pl)* = SV [1x; — il | > S0 12 — il |° = [1x — ql|

since q € C, we concclude that p € P;x. Whis is a contradiction, therefore

p] € PC].(X]').

This completes the proof.



6. Applications of the Douglas Rachford Algorithm

6.1. List of Applications

1. Protein folding and graph coloring problems were first studied via Douglas —

Rachford methods in [6] and [7], respectively.

2. Image retrieval and phase reconstruction problems are analyzed in some detail on [8, 9].

The bit retrieval problem is considered in [7].

3. Mastrix completion problems were studied using Douglas — Rachford methods in [10].
This includes finding various types of hadamard matrices, and construction of low —

rank distance matrices. For a survery of matrix completion problem, see [11].

4. The N queens problem, which requests the placement of N queens on a NxN chessboard, is studied

and solved in [12].

5. Boolean satisfiability is treated in in [7,13]. Note that the three variable case,

3 — SAT, was the first problem to be shown NP — complete [14].

6. TextraVexis an edge — matching puzzle, whose NP — completeness is discusses in [15],

was studied in [16]. Problems up to size 4x4 could be solved in an average of 200 iterations.

There are 102"*1) pgse — 10 nxn boards, withn = 3 being the most popular.

7. Solutions of (very large) Sudoku puzzles have been studied in [12,7]. For a discussion of
NP — completeness of determining solvability of Sudoku see [17].
The ef fective solution of Sudoku pzuzles forms the basis of the next section,

which is our main section.

8. Nonograms [18,19]are a more recent NP — complete Japanese puzzle

which were shown to be solved with Douglas — Rachford methods.



6.2 Douglas Rachford Algorithm — Sudoku

Theorem 1 only guarantees the global convergence of Douglas Rachford algorithms for convex sets.
In spite of this, the algorithm has been successfully applied as a heuristic for solving many nonconvex
problems, especially those of combinatorial type [20,21].

In most applications in the nonconvex setting, the constraint sets satisfy some type of regularity
property and local convergence can be proved [22,7,23].

Either way, the results on global behavior are yet limited to very

specific sets [24], and we cannot conclude the good performance of the algorithm in the

nonconvex setting.

As mentioned before, the ef ficiency and performance of an algorithm, depends on the way it is
formulated.

It is already known that two algorithms might do the same thing exactly,

but one will take much more time and space.

So when we use the Douglas Rachford algorithm to a nonconvex setting,

finding a suitable formulation can be crucial

forit's success as a heuristic. Sometimes the formulation of a problem can successfully solve

the problem always, sometimes, and even never, two dif ferent formulations of essentially the same

problem, can yield very dif ferent results.

We'll briefly discuss an interesting example regarding those results.

Sudoku, which will also lead us to the topic of Magic Squares, which are very similar in nature.

Solving Sudoku puzzles with Douglas Rachford was proposed in [7],

and also later analyzed in [12] and [20].

A sudokuis a9 by 9 grid, divided into 3 by 3 subgrids, with some entries already prefilled.
The goalis to fill all the remaining entries in such a way that:

every row, column, and subgrids, contain every digit from 1 to 9 exactly once.

2 5] 1 9 41216571398
8 2 3 6 81517129311 |4]6
3 6 7 1131914681275
1 6 917|138 |5]6]2)4
5|4 119 5141372618119
2 7 68321149753
9 3 8 71914632581
2 8 4 7 2165814937
1 9 7 6 311 (819 |5 |714(6]2

(a) Unsolved Sudoku b) Solved Sudoku
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Sudokus, are actually matrix completion problems, which we can model as a feasibility problem.
N

There are dif ferent ways to choose the constraint sets Cj, ..., Cy, in such a way that ﬂ C; coincides
i=1

with the unique solution of the Sudoku.
Eithe way, as we've already seen before, in order to apply the Douglas —

Rachford method,

the sets must be chosen in such a way that the projections upon them can be easily computed,

ideally having a closed form.

We'll show two ways of Modelling Sudoku, one as an integer feasibility problem,

and the other as a binary feasibility problem.



6.2.1 Sudoku Modeled as an Integer Problem.

It is fairly simple to model sudoku as an Integer Problem.

Denote S by the partially filled 9 by 9 matrix representing the unsolved Sudoku.

Let] c {1,2,...,9}? be the set of indicies for which S is already filled, and let Apj

denote the (i, j), entry of the matrix A.

If we denote by C the set of vectors which are permutations of 1,2,...,9, then amatrix A €
R%* s a solution to the

Sudoku only and only if A € C; N C, N C3 N C, where

C; = {A € R%°|Eachrow of A € C}

C, = {A € R%°|Each column of A € C}

C; = {A € R®°|Each subgrid of A € C}

Co ={AER™)|A;; =S,V (i,)) €.

The projection onto C, can be calculated component wise, Where the projections of C;,C, and C5,

are determined by the next result:

Proposition 2

Denote by C € R™ the set of vectors whose entries are all permutations of ¢4, ..., Cpy, €
R. Then for any x € R™ one has that:

Pc(x) = [C]y,

Where [C], denotes thes et of vectors in C such that

y € [C]y if the iy, largest entry of y, is indexed the same

as the iy, largest entry of x.

Proof:
Foranyc € C:
lx = cl|* = |IxI|” + |lcl|* = 2xTc = |IBI|* + |ILell]* = 2xTe = [1Ex1|* + [l

Iix] = [ell]” = |Ix = yI|* fory € [C],

= 2[x]"[c] =

Proposition 2 suggests the following algorithm in order to compute a projection of x onto C.
Since the projection in general not unique,

we want to find the nearest point, p, in the set of projections or some other alternative.



For convenience, given a vectory €
(R?)™, we denote the projections onto the first and second product coordinates

by Q and S, respectively. That is, if
y = ((x1,¢1), (x2,¢2), ..., (X, €)) € (RD™, then
Qy = (xll ---;xn): Sy = ((Cl' e CZ))

We can now state the Algorithm
Algorithm 1 Projection: Input: x € R" and c4, ...,c, € R.

1. For comfortability, reorder {c,} such that ¢; < ¢;y1 Vi € [1,..n — 1].

2. Sety = ((x1,¢1), (X2, €2), v, (X, ) € (RB™

3. Set z to be a vector with the same components as y such that Qz is in non —
increasing order.

4. Output:p = Sz



6.2.2 Sudoku Modeled as a zero — one problem.

Another way to formalize the Sudoku problem is a zero — one problem, as follows:
We'll reformulate the matrix A € R%* as B € R%*%*° such that:

1, if AG,)) =k

BGj o = { 0, otherwise

This reformulation transforms the entries into a 3 — dimensional zero —

one array, which can be thought of as a cube, seen in figure 7.

Figure 7: Zero-one representation of a Sudoku puzzle

Denote by S' the 9x9x9 zero — one array corresponding to the unsolved sudoku puzzle S.
Letl:=1{12,..9}and] <

I3 be the set of indices for which S’ is filled, and let B denote the 9 —

dimensional standard basis.

The four constraints of the integer problem, now become the following constraints:

C, ={B € R%**%:B(i,:,k) E BV i,k € I}

C, ={B € R B(:,j,k) EBVYj,k€I}

C3 = {B € R¥%:vecB3;41.3(i+1)3j+1:3(+1)k € Bfori,j =012 and k € I}

Cy ={B € R**:B(i,j,k) =1V (i,j, k) €]'}

where vecA is the vectorization of A by columns.

Further, since each cell of the sudoku puzzle must be filled exactly by one number,
we must add the additional constraint:

Cs == {B € R™*%*°:B(i,j,:) € BV i,j €I}

S S SR

(a) 4 (b) g ((‘) C'q (d) Cs
Figure 8: Visualization of the constraints used for modeling Sudoku as a zero-




Then, B completes S’ (And thus solves the sudoku) if and only if B € N3, C;.
Again, the projection onto C, can be calculated componnet wise, while the projections onto Cy,C,, C3,Cs

can be easily calculated using Propisition 2.

6.2.3 Performance of the Douglas —

Rachford method on Sudoku Puzzles

As observed in [25], the Douglas —

Rachford method was totally inef fective for solving the integer formulation.

On the other hand, it was seen that the algorithm is very successful when it is applied to the
binary formulation,

being able to solve nearly all the instances in all the Sudoku libraries presented in [25],
Even in the one library that it was the most unsuccessful,

the top95 library, it had a success rate of 87%.

Another way to formulate Sudoku as feasibility problems was tested in [20, 26],

based on the fact that an unsolved sudoku can be viewed as a graph precoloring problem.

The rank formulation presented in [26] had a success rate of 100% in the top95

library, and no sudoku has been found so far for which the Douglas Rachford method fails to
find it's solution for every initial point.

Therefore, we can conclude that the way we formalize our problem,

has huge impacts on the results we'll get from the Douglas Rachford method,

when applied in the nonconvex set.



6.3. Finding Magic Squares as a feasibility problem

In this section, which is also the main section, where we discuss our main objective of this project,
to find magic squares, as a feasibility problem. Allthe information that was given about Projections

and Sudoku is very relevant to this next section.

We'll propose two dif ferent methods to solve magic squares as a feasibility problem,
one is an integer formulation, and the other one is a binary formulation.

Both are inspired by the testst that were done on Sudoku.

To formulate the search, we first thing we need to do is to choose some sets,

whose intersection, includes all the properties that define a magic square of order n.
These properties are:

The sum of each row, column, both main diagonals, is constant, also known as the Magic Constant M =
n(n?+1)

2 )
and it must contain all numbers between 1 and n?. Note that if our goal would be to fill a prefilled

Magic Square,we'd need to add additional constraints that fix those prefilled numbers.

A natural approach to look for magic squares, would be through the use of Integer Formulation.

Afterwards, we'll show how to formulate the search for magic squares as a Binary Problem.



6.3.1 Magic Squares Modeled as Integer Problems

Denote P the set of permutations of 1,2,...,n%, and I == {1,2,..,n},

Then A € R™™ is a magic square if and only if A € N;_, C;, where

Ci={A€R™: Y} A ;=cVi€l}
C,={AER™: Y A;j=cVjEI}
Csi={A€R™\ Y A;; =c}
Co={AER™: N1 Apsiiy,i = c}
Cs == {A € R™™: vecA € P}

The first four sets are clearly convex, as I shall prove for one of the sets.

The proof's for the other is similar.

Claim: C, is convex.

Proof:
Take A, B € Cy, then
The sum of each row of Ais equal to c.

The sum of each row of B is equal to c.

Take A € [0,1], then:

AxA+(1—-21)+B

Since we know that each row in A equals c,
theneachrowinA*AisAx*c

And for (1 — A)B the sumof eachrowis (1 —A)c
Soif weaddup A+ A+ (1 — A1) * Bviarows,
we'll get for each row the sumAc+c—Ac=c
and therefore C; is convex.

DONE.

Same for C,,C3 and C,.



Their projection operators have a closed form determined by the next result:
Proposition 3:

Consider S = {x e R™: Y™ x; = c}. For any x € R™.

1
1 1
Ps(x) =x + — (c— X% x;)ewheree =

Proof:

This follows from the standard formula for the orthogonal projection, onto a hyperplane, since S =

{xeR™, < x,e> =c}.

Thereby, the projections onto each one of these sets are given by:
€= Xizq Agi e €= XNizg Agy
) :
PC1 (A) == A + ;

C—YiiAnic— 2 Ap
c—Xit1Aiq . C— Z?:lAm\
. )
PCZ (A) == A + Z

c— Z?=1Ai,n - C = Zln=1Ai,n

1
Pe, A=A+ - (C - Y Ai,i)ln

Pe,(A) = A+=(c— Xy Aipeica) I

Finally, Cs is a nonconvex set containing all matrices whose entries are permutations of 1,2, ..., n?,
so it's projection operator is determined by Proposition 2. Therefore, given a nxn matrix, to

compute its projection onto Cs,

we just need to sort the elements of the matrix in ascending order, and place the number 1 in the cell
that containsthe smallest number, 2 in the cell that contains the next smallest number,

and so on.

If it happens that there are two equal elements, then the projection of the matrix won't be unique.



Completing a Partially Filled Magic Square

If M is a partially complete matrix, representing a partially complete magic square, denote by ] €
I1? the set of indices for which M is prefilled.

In order to find a completion of the magic square, we need to add the following constraint:

Co={AER™™A;; =M,;;V(ij) €]}
Therefore, Acompletes M if and only if, A € N¢_, C;

The projection onto Cg is given componentwise by:

Mi,j' (lr]) E]

.. 5
A;j otherwise v(i,j)€El

Pc (4) :{



6.3.2.Magic Squares Modeled as Binary Problems

In order to model the search for magic squares, using a binary feasibility problem, we'll reformulate A
Rnxn as

. 1, if A(i,j) = k
B € R™™" 5.t B(i,jk ={’ )
@i k) 0, otherwise
That way, we transform the entries of our matrix, into 3 dimensional zero —
one arrays, and each number in the magic

square can be thought of as a pillar made up of single cubes.

2| 7|6

o 5|1 i
1 |a|s /E
Figure 9: Representation of the numbers in the first row of a 3 = 3 magic square
as columns of small cubes for the binary formulation

The constraints we had in the Integer Feasibility Problem now become the following constraints:

2 2 .
C, = {B € RMMN . Y1 Xk=1Bijk =c Vi€ 1}

2 2 .
Cy={B e R™™* ;30 50 By =cV¥jell}
2 2

C3: {B € R Y1 Xk=1 Bk = ¢ }
Cy:

2 2
= {B € R 3 Yk=1Bin-i+1k =¢C }

e
=

(=) O (B) g {e) O3 (d) Cy
Figure 10: Visualization of the constraints used for modeling magic squares as a
zero-one program. Each colored block must be formed by exactly ¢ cubes (ones)

Constraint 5 that we had for the integer feasibility problem now becomes the following intersection of



two sets:
Cs = {B € (0, ¥ ¥ B(i,j, k) = n? —k + 1, Vk € [1,2,...,n?]}
Co = {B € {0,1}™"*"*: vecB, ;. € BV i,j € I}

where B = {[1,1,...,1],[1,1,...,0], ..., [1,0,0, ... 0]} is a base of vectors of R,

On the one hand, constraint 5 guarantees that the first floor of B is all filled with ones,
the second floor must have

n? — 1 ones, and so on until the last floor, the n%, floor will have exactly 1 one.

On the other hand, constraint 6 guarantess that the matrix is formed by pillars of ones standing on the
floor,so if there is a one in an entry, all the elements below it must be ones too.
Therefore, B is magic square if and only if

B € Ni-; C;

The projections onto the first four sets are given, and can be calculated using Proposition 3.

u1 u1\

Pcl(B)—B+_

1
Pe,(B) =B +—

U1 V; .
V103
k’h Uy ..

/e Onz ...Onz\
0,2€..0,2

1 2
Pcl(B):B‘i'F(C_ ?=IZZ=1Biik)| ' |

\onz 0, /

1 /
PC1(3)=B+E( 12 1Bln i+1,k |\

where e = (1, ...,1)]R§n2 and

up :=( 12 1Bpjk:---, 12 1Bp]k)€Rn

2



2

2 2
Up = (C - Z‘{L:l Zﬁ:l Bp'j'k, ey C — :1:1 Z‘;’cl=1 Bp,],k) e Rn
Vij€El

P¢,(B);; = argminpes ||Bi,j - b||

And if we want to complete a partially filled magic square,

it is analogous to the integer problems, so we'll not get into that.



7 Implementation and Experimentation of Magic Squares

In order to implement the algorithms we've learned, we'll use Matlab as our workplace.
We'll implement both formulations, the integer one and the binary one, and compare how dif ferent

formulations af fect the results of the algorithm.

For each formulation, we'd like our algorithm to run on the same space product formulation
we've already discussed.
As for a termination criteria, we'll either terminate after 30 minutes of runtime,

or after finding a solution.

By Theorem 1, we know that the Shadow Sequene {P,(x,,)} converges weakly to Pp(x*) €
cnD,

in the case where C N D # @. But we know that C N D #

@ since Magic Squares do in fact exist.

Therefore by this theorem, The set {P,(x,)} converges to a magic square.



7.1 Implementation of the Integer Feasibility Problem:

Take xy :== (y,v,y,y,¥) € D for some y € R™" randomly chosen with entries [0,1].

We know already how to calculate Pp(x,)and Pc(x,), since the closed forms are given in

Propositions 2 and 3.

We also know that x,,1 = x, + Pp(2Pc(xy,) — x5,) — P ()

And for our algorithm not to run infinitely long, we'll set a limit to how long the algorithm will run,
or how close to convergence we'd like to be. Meaning,
we can limit our algorithm to work let's say 30 minutes,

or we can also stop the algorithm when the following upholds:

|round (PD (xn)) — P, (round (Pp (xn))) | | <

0.05 V i, where round(-) gives the nearest rounded integer, if it's a vector,
then it is done componentwise. This also means that P, (x,) is very close to every set, meaning that

Pp(xy,) is close to intersect every set.



7.2 Algorithms for Magic Squares

Main Algorithm:

Input: n, Output:n by n magic Square.

We used the douglas —

rachford algorithm here, given by DROperator function. We used the DR + Proj variant,
after 400,800,1600,3200, ... iterations.

After calculating our current Diagonal Matrix, we check how close it is to the set C,

and if it is close enough, we can conclude that our Diagonal Matrix is a Magic Square.

function [ol,02,03] = MagicSquare (dim)

y=randi ([0 1],dim):
zn=zeros (dim,dim, 4) ;
for i=1:5

xn(:,:,1)=y;
end

cnt=0;

while toc<3 && k<100000
if k==400*power(2,t)
t=t+1;

xn=ProjectionD (DROperator(xn));
pD=ProjectionD(xn);
pCpD=ProjectionC(pD) ;
RpCpD=ProjectionC (round(pD)) ;

for i=1:5
if norm(round(pD(:,:,1i))-(RpCpD(:,:,1)))<=.05
cnt=cnt+1;

zn=DROperator (xn) ;
pD=ProjectionD (xn) ;
pCpD=ProjectionC(pD) ;
RpCpD=ProjectionC (round(pD)) 5

for i=1:5
if norm(round(pD(:,:,1)) - (RpCpD(:,:,1)))<=.05
cnt=cnt+1;

k=k+1;
if cnt==5
k=100000;
ol=round (pD);
o2=round (pCpD) ;

ol=round(pD);
o2=round (pCpD) ;
03=RpCpD:

cnt

end



Side Algorithms:

Logic of the calculation of the projection onto Cs:

First we create an ascending array of [1, ...,n?].

Then we take our current matrix, transform it into a column vector, and sort it in an ascending order,
Then for the smallest number in the matrix, we assign the number 1,

the next smallest number gets the number 2, and so on.

If we have two equal numbers in the matrix, then we assign the numbers by the order that

the numbers in the matrix were read.

226 124
In the end, if our main matrix was ( 5157 ) , Then the projection of this matrix onto Cs is (3 9 5).
10913 768

Which is indeed what we get in Matlab:

pC
3x3 double
1 2 3
3 z ;
5 15 7
o 9 13




Find Projections onto C:

function [pC]l] = ProjectioncC(x)

n=size(x,1);:
c=n* (n"2+1) /2:
pC=zeros(n,n,5);

rowsums=zeros (n, 1)
columnsums=zeros(n, 1) ;

% Calculating the sum of each row, column, and the diagconals of the matrix.
for i=l:n

rowsums (i)=sum(x (i, :,1));

columnsums (i)=sum(x(:,i,2))

end

mainDiagonalsSum=sum(diag(x(:z,:,3))):
antiDiagonalsum=sum(diag(flip(x(:,:,4)))):

% Calculating the projections of y onto each of the convex subsets
% We hawve a closed form.

vl=ones (n,l) *c-rowsums;

vZ2=ones (l,n) *c—columnsums"' ;

pCl=x(:,:,1)+(1/n) *repmat (vl,1,n)

pCZ2=x(:, :,2)+(1/n) *repmat (v2,n, 1) s

pC3=x(:,:,3)+(1l/n)* (c-mainDiagonalSum) *eye (n) ;

pCa=x(:,:,4)+(1l/n)* (c-—antibDiagonalsSum) *flip(eye(n)); %% (Inverse ID)

v=[l:n*n]"';

B=x(:,:,5)";

B=B(:);

sortB=sort(B); % Ascending Order
proj5vec=zeros(l,n*n);

$ An algorithm to calculate the projection of y onto C5,
% Loglic of the algorithm explained in presentation
for i=1:n*n
f=find(sortB==B(1),1):
projsSvec(i)=v(f);
v(L)=[];
sortB(f)=[1:
end

proj5Vec=reshape (proj5vVec, [n nl);
pCS=proj5vec’';

pCi(:,:,1)=pCl;
pC(:, :,2)=pC2;
pCi(:,:,3)=pC3;
pC(:, :,4)=pC4;
pC(:,:,5)=pC5;



Find Projections onto D:

kunction [pD] = ProjectionD(x)
n=size(x,1);
matSum=0;
D=zeros(n,n,5):
for i=l:n
matSum=matsSum+x(:,:,1) % Sum of vectors = L vector
end
matAvg=matSum/n; % Average of those vectors
for i=1:5
D(:,:,1)=matAvg;

end

pD=D; % 5 times, since we have 5 constraints.

Iteration Algorithm:

function [x] = DROperator (x0)

ProjC=ProjectionC (x0);
ProjD=ProjectionD (2*ProjC-x0) ;
¥x=x0+ProjD-ProjcC;



7.3 Results

We let the algorithm run either until 10000 iterations have been done, or 30 seconds have passed.
We generate a sequence of elements {Pp(x,)}, which:

By Theorem 1,

1.IfANB #

@, then {x,,} is weakly convergent to a point x* and{P,(x,)} is weakly convergent to P,(x*) €
ANB.

We know that Magic Squares do exist. So D N C must be non — empty.

As a consequence of this theorem, in our results, we looked at the sequence {Pp(x,,)},
And also at the sequence {P;(Pp(x,)}

which was given as a variant in 3. By the theorem, {Pp(x,)} should converge to a magic square.

In all of our results, we haven't received even a single magic square when we looked at {Pp(x,)}.

It seems that Pp(x,) converges to a matrix that belongs to C; ...N

C4, but not to Cs, meaning the elements

of Pp(x,) are not a permutation of 1 ton?.

That means that the matrix we get does uphold the criteria that each row sums up to the magic constant,
so does each

column, and both main diagonals. But the matrix isn't a permutation of 1 to n?,

therefore it is not a magic square.

The sole property that our final matrix is missing, is the property that the matrix also belongs to Cs,

which means that the matrix is a permutation of 1 to n®.

The conclusion was either that it didn't work because Cs was nonconvex so the theorem didn't apply,

or that we wrote the algorithm to calculate the projection onto Cs is wrong, which doesn’t seem to be the
behavior of Cs on dif ferent matrices. The algorithm to calculate the projection onto C5 was given in
Proposition 2, but perhaps | have misunderstood the logic of this algorithm. Because it does seem,

that the way | understood the

logic of how to project onto Cs, and how I wrote the algorithm relative to my understanding, is correct,

but perhaps I've misunderstood.



8. Conclusions

To conclude our work, we’ve seen a few examples of how the Classic Douglas-Rachford and the
Cyclic Douglas-Rachford algorithms iterate. We've seen that in some cases, like the 3 Convex sets
example, the Classic Douglas-Rachford failed to converge , while the variation of the classic douglas-
rachford algorithm, the cyclic douglas-rachford algorithm, did indeed converge to the point which is
the intersection of all the sets. We've seen that the theory and theorems that we’ve stated, appear

to be true in our examples.

What we can conclude from that, is that how we define our iterations, the order we define them,

can change a problem from being feasible using a method, to unfeasible, and vice versa.

We've seen that a very useful notion, the Space Product Formulation, can take advantage of the
Douglas-Rachford theorem for 2 sets, by creating 2 other sets, called the D (Diagonal) and C sets,
Which can help us deal with convex and nonconvex problems involving more than 2 sets, potentially,
a very big amount of sets, which as a result, we’ve seen that many valuable mathematical problems
from lots of fields, specifcally combinatorial problems is what we’ve went deeper into, even these

types of problems, can be solved, and we can find a solution, using the Douglas-Rachford method.

In our magic square case, our algorithm didn’t manage to give us a full legit completed Magic
Square, which was disappointing. My conclusions as to why this has happened, are written

In the result part of the Magic Squares section (section 7).

For the future of the field of Optimization, both in convex and nonconvex settings, | believe we can
expect the Douglas-Rachford algorithm to still be successful in many cases, and | also believe that
people, with the need to solve different feasibility problems, will come up with various variations of
the Classic Douglas Rachford algorithm,

To give an answer to the situations where the Classic Douglas Rachford algorithm does not give us

The result, like shown in Example 1 with the 3 Lines.
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